No sooner had Marconi announced the success of his Newfoundland experiments than critics began to raise objections. Might not the signals which he received have been sent from some passing ship fitted with wireless-telegraphy apparatus? Or, might they not have been the result of electrical disturbances in the atmosphere? Or, granting his ability to communicate across seas, how could he preserve the secrecy of his messages? If they were transmitted into space, why was it not possible for any one with a receiving instrument to take them? And was not his system of transmission too slow to make it useful, or was it not rendered uncertain by storms? And so on indefinitely. An acquaintance with some of the principles which Marconi considers fundamental, and on which his work has been based, will help to clear away these objections and give some conception of the real meaning and importance of the work at St. John's and of the plans for the future development of the inventor's system.

In the first place, Mr. Marconi makes no claim to being the first to experiment along the lines which led to wireless telegraphy, or the first to signal for short distances without wires. He is prompt with his acknowledgment to other workers in his field, and to his assistants. Professor S. F. B. Morse, the inventor of telegraphy; Dr. Oliver Lodge and Sir William Preece, of England; Edison, Tesla, and Professors Trowbridge and Dolbear, of America, and others had experimented along these lines, but it remained for Marconi to perfect a system and put it into practical working order. He took the coherer of Branley and Calzecchi, the oscillator of Righi, he used the discoveries of Henry and Hertz, but his creation, like that of the poet who gathers the words of men in a perfect lyric, was none the less brilliant and original.

Marconi Transatlantic Station at
South Wellfleet, Cape Cod, Mass.

In its bare outlines, Marconi's system of telegraphy consists in setting in motion, by means of his transmitter, certain electric waves which, passing through the ether, are received on a distant wire suspended from a kite or mast, and registered on his receiving apparatus. The ether is a mysterious, unseen, colourless, odourless, inconceivably rarefied something which is supposed to fill all space. It has been compared to a jelly in which the stars and planets are set like cherries. About all we know of it is that it has waves—that the jelly may be made to vibrate in various ways. Etheric vibrations of certain kinds give light; other kinds give heat; others electricity. Experiments have shown that if the ether vibrates at the inconceivable swiftness of 400 billions of waves a second we see the colour red, if twice as fast we see violet, if more slowly—perhaps 230 millions to the second, and less—we have the Hertz waves used by Marconi in his wireless-telegraphy experiments. Ether waves should not be confounded with air waves. Sound is a result of the vibration of the air; if we had ether and no air, we should still see light, feel heat, and have electrical phenomena, but no sound would ever come to our ears. Air is sluggish beside ether, and sound waves are very slow compared with ether waves. During a storm the ether brings the flash of the lightning before the air brings the sound of thunder, as every one knows.

At Poole,
England.

Electricity is, indeed, only another name for certain vibrations in the ether. We say that electricity "flows" in a wire, but nothing really passes except an etheric wave, for the atoms composing the wire, as well as the air and the earth, and even the hardest substances, are all afloat in ether. Vibrations, therefore, started at one end of the wire travel to the other. Throw a stone into a quiet pond. Instantly waves are formed which spread out in every direction; the water does not move, except up and down, yet the wave passes onward indefinitely. Electric waves cannot be seen, but electricians have learned how to incite them, to a certain extent how to control them, and have devised cunning instruments which register their presence.

Electrical waves have long been harnessed by the use of wires for sending communications; in other words, we have had wire telegraphy. But the ether exists outside of the wire as well as within; therefore, having the ether everywhere, it must be possible to produce waves in it which will pass anywhere, as well through mountains as over seas, and if these waves can be controlled they will evidently convey messages as easily and as certainly as the ether within wires. So argued Mr. Marconi. The difficulty lay in making an instrument which would produce a peculiar kind of wave, and in receiving and registering this wave in a second apparatus located at a distance from the first. It was, therefore, a practical mechanical problem which Marconi had to meet. Beginning with crude tin boxes set up on poles on the grounds of his father's estate in Italy, he finally devised an apparatus from which a current generated by a battery and passing in brilliant sparks between two brass balls was radiated from a wire suspended on a tall pole. By shutting off and turning on this peculiar current, by means of a device similar to the familiar telegrapher's key, the waves could be so divided as to represent dashes and dots, and spell out letters in the Morse alphabet. This was the transmitter. It was, indeed, simple enough to start these waves travelling through space, to jar the etheric jelly, so to speak; but it was far more difficult to devise an apparatus to receive and register them. For this purpose Marconi adopted a device invented by an Italian, Calzecchi, and improved by a Frenchman, M. Branley, called the coherer, and the very crux of the system, without which there could be no wireless telegraphy. This coherer, which he greatly improved, is merely a little tube of glass as big around as a lead-pencil, and perhaps two inches long. It is plugged at each end with silver, the plugs nearly meeting within the tube. The narrow space between them is filled with finely powdered fragments of nickel and silver, which possess the strange property of being alternately very good and very bad conductors of electrical waves. The waves which come from the transmitter, perhaps 2,000 miles away, are received on a suspended kite-wire, exactly similar to the wire used in the transmitter, but they are so weak that they could not of themselves operate an ordinary telegraph instrument. They do, however, possess strength enough to draw the little particles of silver and nickel in the coherer together in a continuous metal path. In other words, they make these particles "cohere," and the moment they cohere they become a good conductor for electricity, and a current from a battery near at hand rushes through, operates the Morse instrument, and causes it to print a dot or a dash; then a little tapper, actuated by the same current, strikes against the coherer, the particles of metal are jarred apart or "decohered," becoming instantly a poor conductor, and thus stopping the strong current from the home battery. Another wave comes through space, down the suspended kite-wire, into the coherer, there drawing the particles again together, and another dot or dash is printed. All these processes are continued rapidly, until a complete message is ticked out on the tape. Thus Mr. Kemp knew when he heard the tapper strike the coherer that a signal was coming, though he could not hear the click of the receiver itself. And this is in bare outline Mr. Marconi's invention—this is the combination of devices which has made wireless telegraphy possible, the invention on which he has taken out more than 132 patents in every civilised country of the world. Of course his instruments contain much of intricate detail, of marvellously ingenious adaptation to the needs of the work, but these are interesting chiefly to expert technicians.