Briefly stated again, the problem was this: We have here a parasite in the blood which behaves as do many other forms of life. Some of these parasites do not go on with their development until they are removed from the circulation. Now, how are they thus removed from the circulation under normal conditions? This must first be solved before the still greater and more important problem of how the parasite gets from one human host to another can be taken up. In studying this over Manson reasoned that certain suctorial insects were the agencies through which blood was most commonly removed from the circulation and he ventured the guess that this change in the parasite that may be seen taking place on the slide under the microscope, normally takes place in the stomach of some insect that sucks man's blood. Ross was greatly impressed with the theory and began his long and apparently hopeless task of finding these parasites in the stomach of some insect. When we remember that they are so minute that they can only be seen by the use of the highest power of the microscope we can realize something of the magnitude of the task. Ross, who was at that time stationed in India, selected the mosquito as the most likely of the insects to be the host that he was looking for. For over two and one-half years he worked with entirely negative results, for after examining thoroughly many thousands of mosquitoes he found no trace of the parasite.

Practically all his work was done on the most common mosquito of the region, a species of Culex. But one day a friend sent him a different mosquito, one with spotted wings, and in examining it he was interested to note certain oval or round nodules on the outer walls of the stomach. On closer examinations he found that each of these nodules contained a few granules of the coal-black melanin of malarial fever. Further studies and experiments showed that these particular cells could always be found in the walls of the stomach of this particular species of mosquito a few days after it had bitten a malarial patient. This epoch-making discovery was made in 1898. Ross was detailed by the English government to devote his whole time to the further solution of the problem, and after two years more of careful experimentation and study was able to give a complete life-history of this parasite. His experiments have been repeated many times, and the conclusions he arrived at are as undeniable as any of the known facts of science.

The whole life-history as we now know it can be summed up as follows: The parasites develop within the circulation but certain of them seem to wander about and do not go on with their development there. When these particular parasites are taken into the stomach of most mosquitoes they are digested with the rest of the blood. But when they are taken into the stomach of a mosquito belonging to the genus Anopheles or other closely related genera they are not digested but go on with their development, conjugation and fertilization taking place, resulting in a more elongated form which makes its way through the walls of the stomach on the outside of which are formed the little nodules discovered by Ross on his mosquitoes. Within these nodules further division and development takes place until finally the nodule is burst open and many thousand minute rod-like organisms, sporozoites, are turned loose into the body-cavity of the mosquito. Owing to some unknown cause these little organisms are gathered together in the large vacuolated cells of the salivary glands of the mosquito, and when the mosquito bites a man or any other animal they pour down through the ducts with the secretion and are thus again introduced in the circulation.

The nodules or cysts on the walls of the stomach of the mosquito may contain as many as ten thousand sporozoites, and as many as five hundred cysts may occur on a single stomach.

It takes ten, twelve or more days from the time the parasites are taken into the stomach of the mosquito before they can go through their transformations and reach the salivary gland, the time depending on the temperature. So it is ten or twelve days or sometimes as much as eighteen or twenty days from the time an Anopheles bites a malarial patient before it is dangerous or can spread the disease. On the other hand, the sporozoites may lie in the salivary gland alive and virulent for several weeks. It does not give up all the parasites at one time, so that three or four or more people may be affected by a single mosquito.

It is well known that two parasites may often be seen in the same corpuscle. This is often simply a case of multiple infection, but Dr. Craig has very recently shown that under certain conditions two individuals may enter the same corpuscle and conjugate and the resulting individual will be resistant to quinine and may remain latent in the spleen or bone marrow for a long time. Under favorable conditions it may again begin the process of multiplication and the patient will suffer a relapse.

SUMMARY

Now let us sum up some of the reasons why we believe that the malaria fever can be transmitted only through the agency of mosquitoes. First, we know the life-history of the parasite, it has been studied in both of its hosts. Attempts have been made to rear it in other hosts but without avail, and we know from the general relations of the parasite that it must have this sexual as well as the asexual generations. Second, in some regions which would seem to be malarial, that is, where the miasmatic mists arise, no malaria occurs. Why? Usually it can be definitely shown that no Anopheles occur there. Other mosquitoes may be there in abundance, but if no Anopheles, there is no malaria. In certain regions this is well demonstrated. The west coast of Africa is one of the worst pest-holes of malaria and Anopheles. The east coast has no malaria and no Anopheles. In many islands the same condition exists. On the other hand, the Fiji Islands have Anopheles but no malaria. No malaria has ever been introduced there to infect the mosquitoes. In the same way Stegomyia occurs in some of the South Sea islands and yet there is no yellow fever there.

EXPERIMENTS

We may review, too, a few of the classic experiments that have served to show that malaria can be contracted in no other way than through the bite of the mosquito.