It will be seen from these drawings, which, be it remembered, were taken at the telescope, that it is possible from a great number of such drawings to make a chart of Mars, showing its lands and seas not as they are seen in the telescope, but as they might be laid down by inhabitants of Mars in a map or planisphere. This has been done, with gradually increasing accuracy,—first by Sir W. Herschel, next by Beer and Mädler, then by Phillips, and lastly by myself. (In claiming for my own chart greater accuracy, I am simply asserting the superior completeness of the list of telescopic drawings which I was able to consult.) The result is shown in the accompanying chart ([fig. 22]), which presents the whole surface of Mars divided into lands and seas and polar snows, with the names attached of various observers who have at sundry times contributed to our knowledge of the planet's features.

But now it will be asked by the thoughtful reader, how can any one possibly be sure that the regions called continents and seas do really consist of land and water? At any rate, the doubt might well be entertained respecting the water. For land is a wide term, including all kinds of rock surface, sand, earthy soil, and so forth; but it may seem to require proof that the substance we call water really exists out yonder in space, either in the form of snow and ice at the Martian poles, or as flowing water in the Martian seas, or in the vaporous form in the planet's air.

Fig. 22.—Chart of Mars, from 27 drawings by Mr. Dawes.

Very strange, then, at first must the statement seem, that we are as sure of the existence of water in all these forms on Mars as if we had sent some messenger to the planet who had brought back for study by our chemists a block of Martian ice, a vessel full of Martian water, and a flask of Martian air saturated with aqueous vapour. Indeed, I do not know of any discovery effected by man which more strikingly displays the power of human ingenuity in mastering difficulties which, at a first view, seem altogether insuperable. When we know that a mass of ice as large as Great Britain would appear at the distance of Mars a mere bright point; that a sea as large as the Mediterranean would appear like a faint, greenish-blue, streak; and that cloud masses such as would cover the whole of Europe would only present the appearance of a whitish glare, how hopeless seems the task of attempting to determine what is the real chemical constitution of objects thus seen! It might well be thought that no possible explanation of the method used by astronomers could serve to establish its validity. Yet nothing can be simpler than the principle of the method, or more satisfactory than its application in this special case.

First, let the reader rid his mind of the difficulty arising from the enormous distance of the celestial bodies. To do this let him note that there are some things which a body close by can tell us no more certainly than a remote body. For instance, we are just as certain that Mars is a body capable of reflecting sunlight as we are that a cricket-ball is. We know as certainly, too, that the quality of Mars is such that more of the red of the sun's light is sent to us than of the other colours. For we perceive that Mars is a ruddy planet. Since distance in no way interferes with our perception of these general facts, and others like them, we need not necessarily find in mere distance any difficulty in the way of recognising some other facts. All that we require to be shown before admitting the validity of the evidence is, that it is of such a kind that distance does not affect its quality, however much distance may and must affect the quantity of evidence.

Now there is a means of taking the light which comes from a body shining either with its own or with reflected light, and analyzing it into its component colours. The spectroscope is the instrument by which this is accomplished. I do not propose to describe here the nature of this instrument, or the details of the various methods in which it is employed. I note only that it separates the rays of different colour coming from an object, and lays them side by side for us,—the red rays by themselves, the orange rays by themselves, and so with the yellow, green, blue, indigo, and violet. And not only are the rays of these colours set by themselves, but the red rays are sorted in order, from the deepest brown-red[11] to a tint of red (the lightest) which must almost be called orange; the orange in order, from orange which must almost be called red to a tint (the lightest orange) which must almost be called yellow; the yellow, from an almost orange yellow to a yellow just beginning to be tinged with green; the green, from an almost yellow green (the lightest) to a green which may almost be called blue (the darkest); the blue, from this tint to the beginning of the indigo; the indigo, from this tint to the first rays of the violet; and lastly the violet, through all the tints of this beautiful colour to a blackish-brown violet, where the visible spectrum ends. All these tints are sorted in order by the spectroscope, just as a skilful colourist might range in due sequence a myriad tints of colour. But this is only true of really white light, such light as comes from a glowing mass of metal burning at a white heat. In other cases (even when the light may seem white to the eye) some of the tints are found, when the spectroscope spreads out the colours for us, to be missing. And we know that this may be caused in two ways. Either the source of light never gave out those missing tints; or, the source of light gave them out, but some absorbing medium stopped them on their way before they reached the spectroscope with which we examine them. There may be cases where we cannot tell very easily which of these is the true cause. But sometimes we can, as the instances I have now to deal with will show you.

The sun's own light shows under this method of spectroscopic analysis millions of tints, in fact I might say millions of red tints, and so forth, right through the spectral list of colours. But also many thousands of tints are wanting. Imagine a rainbow-coloured ribbon, the colours ranged along its length, so that the ribbon is black at both ends, and that from the black of one end the colour merges into very deep red, and thence by insensible gradations through orange, yellow, green, blue, indigo, and violet, into the black of the other end. Then suppose that tens of thousands of the fine threads which run athwart the ribbon—i.e., the short cross threads—are drawn out. Then the ribbon, laid on a dark background showing through the spaces where the threads were drawn out, would represent the solar spectrum. We know then that the light of the sun's glowing mass either wants particular tints originally, or shines through vapours which prevent the free passage of rays of those colours. Both causes might be at work, not one only. At present we are not concerned with this particular point; but I only mention that, in reality, no tints are actually wanting, though some are very much enfeebled.