I am inclined to think that there is such an explanation. It seems to me that there are good reasons for regarding Mars as a planet which has passed to a much later stage of planetary life than that through which our earth is now passing, and that in this circumstance some of the peculiarities of his appearance find their explanation. As a planet outside the earth, Mars must probably be regarded as one formed somewhat before the earth. As a much smaller planet, he would be not only less heated when first found (whatever theory of planetary formation we adopt), but would also have parted much more rapidly (relatively) with his heat, according to the same law which makes a small mass of metal cool more quickly than a large one. If he has a rarer atmosphere he would be a colder planet on that account also. Being also remoter from the sun, he receives less heat from that orb, and we thus have a fourth reason for regarding Mars as a much colder planet than our earth, both as to inherent heat and as to heat received from without. It seems to me that we may in this consideration find the real meaning of the comparatively limited extension of the Martian snows. It has been well pointed out by Professor Tyndall that for the formation of great glacial masses, not great cold only, but great heat also is required. The snows which fall on mountain slopes, to be compacted into ice and afterwards to form great glaciers, were raised into the air by the sun's heat. Every ice particle represents the action of that heat upon the particles of water at the surface of ocean, sea, or lake, or of wet soil. If the sun's heat suddenly died out, there would prevail an intense cold, and the snows and ice now existing would assuredly remain. The waters also of the earth would congeal. But no new snows would fall. The congealed seas viewed from some remote planet would appear unchanged. For they would not be covered with snow and broken ice, nor therefore white; but would consist of pure ice throughout, retaining the partial transparency and greenish colour of deep-sea water. No winds would disturb the surface of the frozen seas, for winds have their origin in heat, and with the death of the solar heat the winds would utterly die out also.
If we are to choose between these two explanations,—one that the snows and ice have not the great range we should expect, because the temperature is somehow raised despite Mars's greater distance to the same temperature which we experience, and the other that it is not heat but cold which diminishes the quantity of Martian snow, I conceive that there is every reason the case admits of for accepting the latter instead of the former explanation. As extreme cold would certainly prevent glacial masses from being very large and deep, simply because the stores whence the ice was gathered would be less, the snow caps of a very cold planet would vary as readily with varying seasons as those of a planet like our earth. For though less heat would be poured upon them with the returning summer, less heat would be required to melt away their outskirts.
I think we may fairly regard Mars as in all probability a somewhat old and decrepit planet. He is not absolutely dead, like our own moon, where we see neither seas nor clouds, neither snow nor ice, no effects, in fine, of either heat or cold. But I think he has passed far on the road towards planetary death,—that is, towards that stage of a planet's existence when at least the higher forms of life can no longer exist upon the planet's surface.
There is one peculiarity of the planet's appearance which seems strikingly to accord with this view that Mars holds a position intermediate between that of our earth and the moon,—as indeed we might fairly expect from his intermediate proportions. The seas of our earth cover nearly three-quarters of her entire globe. The moon has no visible water on her surface. If we examine the chart of Mars at page [167], we see that the seas and oceans of the planet are much smaller (relatively as well as actually) than are the seas of our own earth. I have carefully estimated their relative extent in the following simple but effective way. I drew a chart such as the above-mentioned, but on a projection of my own invention, in which equal surfaces on a globe are represented by equal surfaces on the planisphere. Then I cut out with a pair of scissors the parts representing land and the parts representing water (leaving the polar parts as doubtful), and carefully weighed these in a delicate balance. I found that they were almost exactly equal: whatever preponderance there was seemed to be in favour of the land. Thus, if we assume that, when in the same stage of planetary existence, Mars had as great a relative extent of water surface as our earth, or that about 72/100 of the surface of Mars were originally water, we should have to admit that the water had so far been withdrawn into the planet's interior as to diminish the water-surface by 22/100 (for there are now barely 50/100). At a very fair assumption as to the slopes of the Martian sea-bottoms, it would follow that more than half the Martian water originally existing above the surface had been withdrawn into the interior, as the planet's mass gradually cooled.
I am aware the assumption above mentioned is in itself somewhat daring, and is not supported by direct evidence. But, since we have very strong reasons for considering that the moon once had seas, which have been withdrawn in the way suggested, and since Mars unquestionably holds a position midway between the earth and moon as to size and presumably as to age,[13] it seems not unreasonable to find in the character of her seas,—less extended relatively than the earth's, but, unlike the moon's, still existing,—the evidence that she has gone partially through the process through which the moon has long since passed completely.
I think it very likely that the recent discovery of two Martian satellites will lead many to look with more disfavour than ever on the idea that Mars may not at present be the abode of life. For moons seem so manifestly convenient additions to a planet's surroundings, as light-givers, time-measurers, and tide-rulers, that many will regard the mere fact that these conveniences exist as proof positive that they are at this present time subserving the purposes which they are capable of subserving. I would point out, however, that our own moon must have existed for ages before any living creatures, far less any reasoning beings, could profit by her light, or by the regularity of her motions, or by her action in swaying the waters of ocean. And doubtless she will continue to exist for ages after all life shall have passed away from the earth. Again, there can be no question that our earth would present a most attractive scene if she were viewed from the moon, and would be a most useful ornament of the lunar skies. Yet we have every reason to believe that there is not a living creature on the moon at present to profit by her light. The case may well be the same (apart from the actual evidence that it is the same) with Mars. His satellites may long since have served most useful purposes to his inhabitants; but it by no means follows that because if there were inhabitants on Mars now the same purposes would still be subserved, therefore there are inhabitants there.
Let us, however, without considering the question whether the satellites of Mars serve such special purposes for creatures living on the planet, consider briefly the history of their discovery, their nature, and the laws of their motion around the planet.
Astronomers had long examined the neighbourhood of Mars with very powerful telescopes, in the hope of discovering Martian moons. But the hope had so thoroughly been abandoned for many years that the planet had come to be known as "moonless Mars." The construction, however, of the fine telescope which has been mounted at Washington, with an object-glass twenty-six inches in diameter, caused at least American astronomers to hope that after all a Martian moon or two might be discovered. Taking advantage of the exceptionally favourable opportunity presented during the planet's close approach to our earth in the autumn of 1877, Prof. Asaph Hall, of the Washington Observatory, paid special attention to the search for Martian moons. At last, on August 16, 1877, he detected close by the planet a faint point of light, which he was unable to examine further at the time (to see if it behaved as a satellite, or as one of the fixed stars). But on the 18th he saw it again, and determined its nature. He also saw another still fainter point of light closer to the planet; and subsequent observations shewed that this object also was a satellite. During the next few weeks both the moons were observed as closely as possible, in fact, whenever weather permitted, and the result is that we now know the true nature of their paths.
In [fig. 23] these paths are shown as they appeared in 1877. Of course the paths themselves are not seen; but if the satellites left behind them a fine train or wake of light, the shape of this train would be as shown in [fig. 23]. The satellites themselves could not be shown at all in a picture on so small a scale—the diameter of either would certainly be less than the cross-breadth of the fine elliptical line representing its track. The size of the planet is correctly indicated, and the true pose of the planet in 1877 is shown in the figure, his southern pole being somewhat bowed towards the earth. This is the uppermost pole; for the figure represents the planet and his satellites' orbits as they would appear in an astronomical telescope, which inverts objects.