As for the predicted weather changes, they may be regarded as mere moonshine. A number of predictions, founded on the motions of the sun and moon, have found a place during many months past in the columns of a contemporary; but there has been no greater agreement between these predictions and the weather actually experienced than anyone could trace between Old Moore’s weather prophecies and recorded weather changes. In other words, there have been certain accordances which would be very remarkable indeed if they did not happen to be associated with as many equally remarkable discordances. Random predictions would be quite as satisfactory.

A very amusing misprint has found its way into many newspapers in connection with the coming tide. It is interesting as serving to show how little is really known by the general public about some of the simplest scientific matters. The original statement announced that the sun would not be in perihelion by so many seconds of semi-diameter, in itself a very incorrect mode of expression. Still it was clear that what was meant was, that the earth would be so far from the place of nearest approach to the sun that the latter would not look as large as it possibly can look, by so many seconds of semi-diameter. In many papers, however, we read that the ‘sun will not be in perihelion by so many seconds of mean chronometer!’ Who first devised this marvellous reading is unknown.

(From the Daily News for September 27, 1869.)


DEEP-SEA DREDGINGS.

Men have ever been strangely charmed by the unknown and the seemingly inaccessible. The astronomer exhibits the influence of this charm as he constructs larger and larger telescopes, that he may penetrate more and more deeply beyond the veil which conceals the greater part of the universe from the unaided eye. The geologist, seeking to piece together the fragmentary records of the past which the earth’s surface presents to him, is equally influenced by the charm of mystery and difficulty. And the microscopist who tries to force from nature the secret of the infinitely little, is led on by the same strange desire to discover just those matters which nature has been most careful to conceal from us.

The energy with which in recent times men have sought to master the problem of deep-sea sounding and deep-sea dredging is, perhaps, one of the most striking instances ever afforded of the charm which the unknown possesses for mankind. Not long ago, one of the most eminent geographers of the sea spoke regretfully about the small knowledge men have obtained of the depths of ocean. ‘Greater difficulties,’ he remarked, ‘than any presented by the problem of deep-sea research have been overcome in other branches of physical inquiry. Astronomers have measured the volumes and weighed the masses of the most distant planets, and increased thereby the stock of human knowledge. Is it creditable to the age that the depths of the sea should remain in the category of unsolved problems? that its “ooze and bottom” should be a sealed volume, rich with ancient and eloquent legends and suggestive of many an instructive lesson that might be useful and profitable to man?‘

Since that time, however, deep-sea dredging has gradually become more and more thoroughly understood and mastered. When the telegraphic cable which had lain so many months at the bottom of the Atlantic was hauled on board the ‘Great Eastern’ from enormous depths, men were surprised and almost startled by the narrative. The appearance of the ooze-covered cable as it was slowly raised towards the surface, and the strange thrill which ran through those who saw it and remembered through what mysterious depths it had twice passed; its breaking away almost from the very hands of those who sought to draw it on board; and the successful renewal of the attempt to recover the cable,—all these things were heard of as one listens to a half-incredible tale. Yet when that work was accomplished deep-sea dredging had already been some time a science, and many things had been achieved by its professors which presented, in reality, greater practical difficulties than the recovery of the Atlantic Cable.

Recently, however, deep-sea researches have been carried on with results which are even more sensational, so to speak, than the grappling feat which so surprised us. Seas so deep that many of the loftiest summits of the Alps might be completely buried beneath them have been explored. Dredges weighing with their load of mud nearly half a ton have been hauled up without a hitch from depths of some 14,000 feet. But not merely has comparatively rough work of this sort been achieved, but by a variety of ingenious contrivances men of science have been able to measure the temperature of the sea at depths where the pressure is so enormous as to be equivalent to a weight of more than 430 tons on every square foot of surface.

The results of these researches are even more remarkable and surprising, however, than the means by which they have been obtained. Sir Charles Lyell has fairly spoken of them as so astonishing ‘that they have to the geologist almost a revolutionary character.’ Let us consider a few of them.