The only safe basis for the topographical survey of a country is a system of accurate triangulation. And where the extent of country to be surveyed is large, there will always be a great risk of the accumulation of error in the triangulation itself; which must, therefore, be made to depend on the accurate results obtained by the great trigonometrical operations. In order to secure this result, fixed stations are established in the vicinity of the great trigonometrical series. Where this plan cannot be adopted, a network of large symmetrical triangles is thrown over the district to be surveyed, or boundary series of triangles are carried along the outline of the district or along convenient internal lines. The former of these methods is applicable to a hilly district, the latter to a flat country.
When the district to be surveyed has been triangulated, the work of filling-in the topographical details is commenced. Each triangle being of moderate extent, with sides from three to five miles in length, and the angular points being determined, as we have seen, with great exactness, it is evident that no considerable error can occur in filling-in the details. Hence, methods can be adopted in the final topographical work which would not be suitable for triangulation. The triangles can either be ‘measured up,’ or the observer may traverse from trigonometrical point to point, taking offsets and intersections; or, lastly, he may make use of the plane table. The two first methods require little comment; but the principle of plane-tabling enters so largely into Indian surveying, that this notice would be incomplete without a brief account of this simple and beautiful method.
The plane-table is a flat board turning on a vertical pivot. It bears the chart on which the observer is planning the country. Suppose, now, that two points A and B are determined, and that we require to mark in the position of a third point C:—It is clear that if we observed with a theodolite the angles A B C and B A C, we might lay these down on the chart with a protractor, and so the position of C would be determined, with an accuracy proportioned to the care with which the observations were made and the corresponding constructions applied to the chart. But in ‘plane-tabling’ a more direct plan is adopted. A ruler bearing sights, resembling those of a rifle, is so applied that the edge passing through the point A on the chart (the observer being situated at the real station A) passes through the point B on the chart, the line of sight passing through the real station B. The table being fixed in the position thus obtained, the ruler is next directed so that its edge passes through A, while the line of sight points to C. A line is now ruled with a pencil through A towards C. In a similar manner, the table having been removed to the station B, a pencil line is drawn through the point B on the chart towards C. The two lines thus drawn determine by their intersection the place of C on the chart.
The above is only one instance of the modes in which a plane-table can be applied; there are several others. Usually the magnetic compass is employed to fix the position of the table in accordance with the true bearing of the cardinal points. Also the bearings of several points are taken around each station; and thus a variety of tests of the correctness of the work become applicable. Into such details as these I need not here enter. It is sufficient that my readers should have been enabled to recognise the simple principles on which plane-tabling depends, and the accuracy with which (when suitable precautions are taken) it can be applied as a method of observation subsidiary to the ordinary trigonometrical processes.
‘A hilly country,’ says Sir A. Waugh, ‘offers the fairest field for the practice of plane-table surveys, and the more rugged the surface the greater will be the relative advantages and facilities this system possesses over the methods of actual measurement. On the other hand, in flat lands the plane-table works at a disadvantage, while the traverse system is facilitated. Consequently, in such tracts, the relative economy of the two systems does not offer so great a contrast as in the former. In closely wooded or jungly tracts, all kinds of survey operations are prosecuted at a disadvantage; but in such localities, the commanding points must be previously cleared for trigonometrical operations, which facilitates the use of the table.’
In whatever way the topographical details have been filled in, a rigorous system of check must be applied to the work. The system adopted is that of running lines across ground that has been surveyed. This is done by the head of the party or by the chief assistant-surveyor. A sufficient number of points are obtained in this way for comparison with the work of the detail surveyors; and when the discrepancies exceed certain limits, the work in which they appear is rejected. Owing to the extremely unhealthy, jungly, and rugged nature of the ground in which nearly all the Indian surveys have been progressing, it has not always been found practicable to check by regularly chained lines. There are, however, other modes of testing plane-table surveys, and as these entail less labour and expense in hilly and jungly tracts, and are quite as effective if thoroughly carried out, they have been adopted generally, while the measured routes or check-lines have only been pursued under more favourable conditions. Colonel Thuillier states that ‘the inspection of the work of every detailed surveyor in the field has been rigorously enforced, and the work of the field season is not considered satisfactory or complete unless this duty has been attended to.’
The rules laid down to insure accuracy in the survey are—first, that the greatest possible number of fixed points should be determined by regular triangulation; secondly, that the greatest possible number of plane-table fixings should be made use of within each triangle; and lastly, that eye-sketching should be reduced to a minimum. If these rules are well attended to, the surveyor can always rely on the value of the work performed by his subordinates. But all these conditions cannot be secured in many parts of the ground allotted to the several topographical parties owing to the quantity of forest land and the extremely rugged nature of the country. Hence arises the necessity for test-lines to verify the details, or for some vigorous system of check; and this is more especially the case where native assistants are employed.
So soon as the country has been accurately planned, the configuration of the ground has to be sketched up. This process is the end and aim of all the preceding work.
The first point attended to is the arterial system, or water drainage, constituting the outfall of the country; whence are deduced the lines of greatest depression of the ground. Next the watersheds or ridges of hills are traced in, giving the highest level. Lastly, the minor or subordinate features are drawn in with the utmost precision attainable. ‘The outlines of table-land should be well defined,’ says Sir A. Waugh, ‘and ranges of hills portrayed with fidelity, carefully representing the watersheds or divortia aquarum, the spurs, peaks, depressions or saddles, isthmuses or connecting-links of separate ranges, and other ramifications. The depressed points and isthmuses are particularly valuable, as being either the sites of ordinary passes or points which new roads should conform to.’
And here we must draw a distinction between survey and reconnaissance. It is absolutely necessary in making a survey that the outlines of ground as defined by ridges, water-courses, and feet of hills should be rigorously fixed by actual observation and careful measurement. In reconnoitring, more is trusted to the eye.