We have also observations by F. Secchi, at Rome, Mr. Copeland, at Dunecht, and Mr. Backhouse, of Sunderland, all agreeing in the main with the observations made by Vögel and Cornu. In particular, Mr. Backhouse observed, as Vögel had done, that whereas in December the greenish-blue line of hydrogen, F, was brighter than the nitrogen line (also in the green-blue, but nearer the red end than F), on January 6 the nitrogen line was the brightest of all the lines in the spectrum of the new star.
Vögel, commenting on the results of his observations up to March 10, makes the following interesting remarks (I quote, with slight verbal alterations, from a paraphrase in a weekly scientific journal):—“A stellar spectrum with bright lines is always a highly interesting phenomenon for any one acquainted with stellar spectrum analysis, and well worthy of deep consideration. Although in the chromosphere (sierra) of our sun, near the limb, we see numerous bright lines, yet only dark lines appear in the spectrum whenever we produce a small star-like image of the sun, and examine it through the spectroscope. It is generally believed that the bright lines in some few star-spectra result from gases which break forth from the interior of the luminous body, the temperature of which is higher than that of the surface of the body—that is, the phenomenon is the same sometimes observed in the spectra of solar spots, where incandescent hydrogen rushing out of the hot interior becomes visible above the cooler spots through the hydrogen lines turning bright. But this is not the only possible explanation. We may also suppose that the atmosphere of a star, consisting of incandescent gases, as is the case with our own sun, is on the whole cooler than the nucleus, but with regard to the latter is extremely large. I cannot well imagine how the phenomenon can last for any long period of time if the former hypothesis be correct. The gas breaking forth from the hot interior of the body will impart a portion of its heat to the surface of the body, and thus raise the temperature of the latter; consequently, the difference of temperature between the incandescent gas and the surface of the body will soon be insufficient to produce bright lines; and these will disappear from the spectrum. This view applies perfectly to stars which suddenly appear and soon disappear again, or at least increase considerably in intensity—that is, it applies perfectly to so-called new stars in the spectra of which bright lines are apparent, if the hypothesis presently to be mentioned is admitted for their explanation. For a more stable state of things the second hypothesis seems to be far better adapted. Stars like Beta Lyræ, Gamma Cassiopeiæ, and others, which show the hydrogen lines and the sierra D line bright on a continuous spectrum, with only slight changes of intensity, possess, according to this theory, atmospheres very large relatively to their own volume—the atmospheres consisting of hydrogen and that unknown element which produces the D line.[16] With regard to the new star, Zöllner, long before the progress lately made in stellar physics by means of spectrum analysis, deduced from Tycho’s observations of the star called after him, that on the surface of a star, through the constant emission of heat, the products of cooling, which in the case of our sun we call sun-spots, accumulate: so that finally the whole surface of the body is covered with a colder stratum, which gives much less light or none at all. Through a sudden and violent tearing up of this stratum, the interior incandescent materials which it encloses must naturally break forth, and must in consequence, according to the extent of their eruption, cause larger or smaller patches of the dark envelope of the body to become luminous again. To a distant observer such an eruption from the hot and still incandescent interior of a heavenly body must appear as the sudden flashing-up of a new star. That this evolution of light may under certain conditions be an extremely powerful one, could be explained by the circumstance that all the chemical compounds which, under the influence of a lower temperature, had already formed upon the surface, are again decomposed through the sudden eruption of these hot materials; and that this decomposition, as in the case of terrestrial substances, takes place under evolution of light and heat. Thus the bright flashing-up is not only ascribed to the parts of the surface which through the eruption of the incandescent matter have again become luminous, but also to a simultaneous process of combustion, which is initiated through the colder compounds coming into contact with the incandescent matter.”
Vögel considers that Zöllner’s hypothesis has been confirmed in its essential points by the application of spectrum analysis to the stars. We can recognize from the spectrum different stages in the process of cooling, and in some of the fainter stars we perceive indeed that chemical compounds have already formed, and still exist. As to new stars, again, says Vögel, Zöllner’s theory seems in nowise contradicted “by the spectral observations made on the two new stars of 1866 and 1876. The bright continuous spectrum, and the bright lines only slightly exceeding it at first” (a description, however, applying correctly only to the star of 1876), “could not be well explained if we only suppose a violent eruption from the interior, which again rendered the surface wholly or partially luminous; but are easily explained if we suppose that the quantity of light is considerably augmented through a simultaneous process of combustion. If this process is of short duration, then the continuous spectrum, as was the case with the new star of 1876, will very quickly decrease in intensity down to a certain limit, while the bright lines in the spectrum, which result from the incandescent gases that have emanated in enormous quantities from the interior, will continue for some time.”
It thus appears that Herr Vögel regarded the observations which had been made on this remarkable star up to March 10 as indicating that first there had been an outburst of glowing gaseous matter from the interior, producing the part of the light which gave the bright lines indicative of gaseity, and that then there had followed, as a consequence, the combustion of a portion of the solid and relatively cool crust, causing the continuous part of the spectrum. We may compare what had taken place, on this hypothesis, with the outburst of intensely hot gases from the interior of a volcanic crater, and the incandescence of the lips of the crater in consequence of the intense heat of the out-rushing gases. Any one viewing such a crater from a distance, with a spectroscope, would see the bright lines belonging to the out-rushing gases superposed upon the continuous spectrum due to the crater’s burning lips. Vögel further supposes that the burning parts of the star soon cooled, the majority of the remaining light (or at any rate the part of the remaining light spectroscopically most effective) being that which came from the glowing gases which had emanated in vast quantities from the star’s interior.
“The observations of the spectrum show, beyond doubt,” he says, “that the decrease in the light of the star corresponds with the cooling of its surface. The violet and blue parts decreased more rapidly in intensity than the other parts; and the absorption-bands which crossed the spectrum have gradually become darker and darker.”
The reasoning, however, if not altogether unsatisfactory, is by no means so conclusive as Herr Vögel appears to think. It is not clear how the incandescent portion of the surface could possibly cool in any great degree while enormous quantities of gas more intensely heated (by the hypothesis) remained around the star. The more rapid decrease in the violet and blue parts of the spectrum than in the red and orange is explicable as an effect of absorption, at least as readily as by the hypothesis that burning solid or liquid matter had cooled. Vögel himself could only regard the other bands which crossed the spectrum as absorption-bands. And the absorption of light from the continuous spectrum in these parts (that is, not where the bright lines belonging to the gaseous matter lay) could not possibly result from absorption produced by those gases. If other gases were in question, gases which, by cooling with the cooling surface, had become capable of thus absorbing light from special parts of the spectrum, how is it that before, when these gases were presumably intensely heated, they did not indicate their presence by bright bands? Bright bands, indeed, were seen, which eventually faded out of view, but these bright bands did not occupy the position where, later on, absorption-bands appeared.
The natural explanation of what had thus far been observed is different from that advanced by Vögel, though we must not assume that because it is the natural, it is necessarily the true explanation. It is this—that the source of that part of the star’s light which gave the bright-line spectrum, or the spectrum indicative of gaseity, belongs to the normal condition of the star, and not to gases poured forth, in consequence of some abnormal state of things, from the sun’s interior. We should infer naturally, though again I say not therefore correctly, that if a star spectroscope had been directed upon the place occupied by the new star before it began to shine with unusual splendour, the bright-line spectrum would have been observed. Some exceptional cause would then seem to have aroused the entire surface of the star to shine with a more intense brightness, the matter thus (presumably) more intensely heated being such as would give out the combined continuous and bright-line spectrum, including the bright lines which, instead of fading out, shone with at least relatively superior brightness as the star faded from view. The theory that, on the contrary, the matter giving these more persistent lines was that whose emission caused the star’s increase of lustre, seems at least not proven, and I would go so far as to say that it accords ill with the evidence.
The question, be it noted, is simply whether we should regard the kind of light which lasts longest in this star as it fades out of view as more probably belonging to the star’s abnormal brightness or to its normal luminosity. It seems to me there can be little doubt that the persistence of this part of the star’s light points to the latter rather than to the former view.
Let it also be noticed that the changes which had been observed thus far were altogether unlike those which had been observed in the case of the star in the Northern Crown, and therefore cannot justly be regarded as pointing to the same explanation. As the star in the Crown faded from view, the bright lines indicative of glowing hydrogen died out, and only the ordinary stellar spectrum remained. In the case of the star in the Swan, the part of the spectrum corresponding to stellar light faded gradually from view, and bright lines only were left, at least as conspicuous parts of the star’s spectrum. So that whereas one orb seemed to have faded into a faint star, the other seemed fading out into a nebula—not merely passing into such a condition as to shine with light indicative of gaseity, but actually so changing as to shine with light of the very tints (or, more strictly, of the very wave-lengths) observed in all the gaseous nebulæ.
The strange eventful history of the new star in Cygnus did not end here, however. We may even say, indeed, that it has not ended yet. But another chapter can already be written.