But lastly, even more wonderful than the infinite variety of the sidereal system, is its amazing vitality. Instead of millions of inert masses, we see the whole heavens instinct with energy—astir with busy life. The great masses of luminous vapour, though occupying countless millions of cubic miles of space, are moved by unknown forces like clouds before the summer breeze; star-mist is condensing into clusters; star-clusters are forming into suns; streams and clusters of minor orbs are swayed by unknown attractive energies; and primary suns singly or in systems are pursuing their stately path through space, rejoicing as giants to run their course, extending on all sides the mighty arm of their attraction, gathering from ever-new regions of space supplies of motive energy, to be transformed into the various forms of force—light and heat and electricity—and distributed in lavish abundance to the worlds which circle round them.

Truly may I say, in conclusion, that whether we regard its vast extent, its infinite variety, or the amazing vitality which pervades its every portion, the sidereal system is, of all the subjects man can study, the most imposing and the most stupendous. It is as a book full of mighty problems—of problems which are as yet almost untouched by man, of problems which it might seem hopeless for him to attempt to solve. But those problems are given to him for solution, and he will solve them, whenever he dares attempt to decipher aright the records of that wondrous volume.


MALLET’S THEORY OF VOLCANOES.

There are few subjects less satisfactorily treated in scientific treatises than that which Humboldt calls the Reaction of the Earth’s Interior. We find, not merely in the configuration of the earth’s crust, but in actual and very remarkable phenomena, evidence of subterranean forces of great activity; and the problems suggested seem in no sense impracticable: yet no theory of the earth’s volcanic energy has yet gained general acceptance. While the astronomer tells us of the constitution of orbs millions of times further away than our own sun, the geologist has hitherto been unable to give an account of the forces which agitate the crust of the orb on which we live.

The theory put forward respecting volcanic energy, however, by the eminent seismologist Mallet, promises not merely to take the place of all others, but to gain a degree of acceptance which has not been accorded to any theory previously enunciated. It is, in principle, exceedingly simple, though many of the details (into which I do not propose to enter) involve questions of considerable difficulty.

Let us, in the first place, consider briefly the various explanations which had been already advanced.

There was first the chemical theory of volcanic energy, the favourite theory of Sir Humphry Davy. It is possible to produce on a small scale nearly all the phenomena due to subterranean activity, by simply bringing together certain substances, and leaving them to undergo the chemical changes due to their association. As a familiar instance of explosive action thus occasioned, we need only mention the results experienced when any one unfamiliar with the methods of treating lime endeavours over hastily to “slake” or “slack” it with water. Indeed, one of the strong points of the chemical theory consisted in the circumstance that volcanoes only occur where water can reach the subterranean regions—or, as Mallet expresses it, that “without water there is no volcano.” But the theory is disposed of by the fact, now generally admitted, that the chemical energies of our earth’s materials were almost wholly exhausted before the surface was consolidated.

Another inviting theory is that according to which the earth is regarded as a mere shell of solid matter surrounding a molten nucleus. There is every reason to believe that the whole interior of the earth is in a state of intense heat; and if the increase of heat with depth (as shown in our mines) is supposed to continue uniformly, we find that at very moderate depths a degree of heat must prevail sufficient to liquefy any known solids under ordinary conditions. But the conditions under which matter exists a few miles only below the surface of the earth are not ordinary. The pressure enormously exceeds any which our physicists can obtain experimentally. The ordinary distinction between solids and liquids cannot exist at that enormous pressure. A mass of cold steel could be as plastic as any of the glutinous liquids, while the structural change which a solid undergoes in the process of liquefying could not take place under such pressure even at an enormously high temperature. It is now generally admitted that if the earth really has a molten nucleus, the solid crust must, nevertheless, be far too thick to be in any way disturbed by changes affecting the liquid matter beneath.