The next route to be considered in order of time would be the American route; but I prefer to leave this to the last, as the latest results relate to that route. I take next, therefore, a route which some regard as the most promising of all—that, namely, which passes between Spitzbergen and the Scandinavian peninsula.

It will be remembered that Lieutenant Payer, of the Austrian navy, had accompanied Captain Koldewey’s first expedition. When driven back from the attempt to advance along the eastern shores of Greenland, that commander crossed over to Spitzbergen, and tried to find the Land of Gilles. He also accompanied Koldewey’s later expedition, and shared his belief that there is no continuous channel northwards on the western side of the North Atlantic channel. Believing still, however, with Dr. Petermann, the geographer, that there is an open Polar sea beyond the ice-barrier, Payer set out in 1871, in company with Weyprecht, towards the Land of Gilles. They did not find this mysterious land, but succeeded in passing 150 miles further north, after rounding the south-eastern shores of Spitzbergen, than any Arctic voyagers who had before penetrated into the region lying between Spitzbergen and Novaia Zemlia. Here they found, beyond the 76th parallel, and between 42° and 60° east longitude, an open sea, and a temperature of between 5° and 7° above the freezing-point. Unfortunately, they had not enough provisions with them to be able safely to travel further north, and were thus compelled to return. The season seems to have been an unusually open one; and it is much to be regretted that the expedition was not better supplied with provisions—a defect which appears to be not uncommon with German expeditions.

Soon after their return, Payer and Weyprecht began to prepare for a new expedition; and this time their preparations were thorough, and adapted for a long stay in Arctic regions. “The chief aim of this expedition,” says the Revue des Deux Mondes, in an interesting account of recent Polar researches, “was to investigate the unknown regions of the Polar seas to the north of Siberia, and to try to reach Behring’s Straits by this route.” It was only if after two winters and three summers they failed to double the extreme promontory of Asia, that they were to direct their course towards the Pole. The voyagers, numbering twenty-four persons, left the Norwegian port of Tromsoë, in the steamer Tegethoff, on July 14, 1872. Count Wilczek followed shortly after in a yacht, which was to convey coals and provisions to an eastern point of the Arctic Ocean, for the benefit of the Tegethoff. At a point between Novaia Zemlia and the mouth of the Petschora, the yacht lost sight of the steamer, and nothing was heard of the latter for twenty-five months. General anxiety was felt for the fate of the expedition, and various efforts were made by Austria, England, and Russia to obtain news of it. In September, 1874, the voyagers suddenly turned up at another port, and soon after entered Vienna amid great enthusiasm. Their story was a strange one.

It appears that when the Tegethoff was lost sight of (August 21, 1872), she had been surrounded by vast masses of ice, which crushed her hull. For nearly half a year the deadly embrace of the ice continued; and when at length pressure ceased, the ship remained fixed in the ice, several miles from open water. During the whole summer the voyagers tried to release their ship, but in vain. They had not, however, remained motionless all this time. The yacht had lost sight of them at a spot between Novaia Zemlia and Malaia Zemlia (in North Russia) in about 71° north latitude, and they were imprisoned not far north of this spot. But the ice-field was driven hither and thither by the winds, until they found themselves, on the last day of August, 1873, only 6´ or about seven miles south of the 80th parallel of latitude. Only fourteen miles from them, on the north, they saw “a mass of mountainous land, with numerous glaciers.” They could not reach it until the end of October, however, and then they had to house themselves in preparation for the long winter night. This land they called Francis Joseph Land. It lies north of Novaia Zemlia, and on the Polar side of the 80th parallel of latitude. The winter was stormy and bitterly cold, the thermometer descending on one occasion to 72° below zero—very nearly as low as during the greatest cold experienced by Nares’s party. In February, 1874, “the sun having reappeared, Lieutenant Payer began to prepare sledge excursions to ascertain the configuration of the land.... In the second excursion the voyagers entered Austria Sound, which bounds Francis Joseph Island on the east and north, and found themselves, after emerging from it, in the midst of a large basin, surrounded by several large islands. The extreme northern point reached by the expedition was a cape on one of these islands, which they named Prince Rodolph’s Land, calling the point Cape Fligely. It lies a little beyond the 81st parallel. They saw land further north beyond the 83rd degree of latitude, and named it Petermann’s Land. The archipelago thus discovered is comparable in extent to that of which Spitzbergen is the chief island.” The voyagers were compelled now to return, as the firm ice did not extend further north. They had a long, difficult, and dangerous journey southwards—sometimes on open water, in small boats, sometimes on ice, with sledges—impeded part of the time by contrary winds, and with starvation staring them in the face during the last fortnight of their journey. Fortunately, they reached Novaia Zemlia before their provisions quite failed them, and were thence conveyed to Wardhoë by a Russian trading ship.

We have now only to consider the attempts which have been made to approach the North Pole by the American route. For, though Collinson in 1850 reached high latitudes to the north of Behring’s Straits, while Wrangel and other Russian voyagers have attempted to travel northwards across the ice which bounds the northern shores of Siberia, it can hardly be said that either route has been followed with the definite purpose of reaching the North Pole. I shall presently, however, have occasion to consider the probable value of the Behring’s Straits route, which about twelve years ago was advocated by the Frenchman Lambert.

Dr. Kane’s expedition in 1853–55 was one of those sent out in search of Sir John Franklin. It was fitted out at the expense of the United States Government, and the route selected was that along Smith’s Sound, the northerly prolongation of Baffin’s Bay. Kane wintered in 1853 and 1854 in Van Reusselaer’s Inlet, on the western coast of Greenland, in latitude 78° 43´ north. Leaving his ship, the Advance, he made a boat-journey to Upernavik, 6° further south. He next traced Kennedy Channel, the northerly prolongation of Smith’s Sound, reaching latitude 81° 22´ north. He named heights visible yet further to the north, Parry Mountains; and at the time—that is, twenty-two years ago—the land so named was the highest northerly land yet seen. Hayes, who had accompanied Kane in this voyage, succeeded in reaching a still higher latitude in sledges drawn by Esquimaux dogs. Both Kane and Hayes agreed in announcing that where the shores of Greenland trend off eastwards from Kennedy Channel, there is an open sea, “rolling,” as Captain Maury magniloquently says, “with the swell of a boundless ocean.” It was in particular noticed that the tides ebbed and flowed in this sea. On this circumstance Captain Maury based his conclusion that there is an open sea to the north of Greenland. After showing that the tidal wave could not well have travelled along the narrow and icebound straits between Baffin’s Bay and the region reached by Kane and Hayes, Maury says: “Those tides must have been born in that cold sea, having their cradle about the North Pole.” The context shows, however, that he really intended to signify that the waves were formed in seas around the North Pole, and thence reached the place where they were seen; so that, as birth usually precedes cradling, Maury would more correctly have said that these tides are cradled in that cold sea, having their birth about the North Pole.

The observations of Kane and Hayes afford no reason, however, for supposing that there is open water around the North Pole. They have been rendered somewhat doubtful, be it remarked in passing, by the results of Captain Nares’s expedition; and it has been proved beyond all question that there is not an open sea directly communicating with the place where Kane and Hayes observed tidal changes. But, apart from direct evidence of this kind, two serious errors affect Maury’s reasoning, as I pointed out eleven years since. In the first place, a tidal wave would be propagated quite freely along an ice-covered sea, no matter how thick the ice might be, so long as the sea was not absolutely icebound. Even if the latter condition could exist for a time, the tidal wave would burst the icy fetters that bound the sea, unless the sea were frozen to the very bottom; which, of course, can never happen with any sea properly so called. It must be remembered that, even in the coldest winter of the coldest Polar regions, ice of only a moderate thickness can form in open sea in a single day; but the tidal wave does not allow ice to form for a single hour in such sort as to bind the great ice-fields and the shore-ice into one mighty mass. At low tide, for a very short time, ice may form in the spaces between the shore-ice and the floating ice, and again between the various masses of floating ice, small or large (up to many square miles in extent); but as the tidal wave returns it breaks through these bonds as easily as the Jewish Hercules burst the withes with which the Philistines had bound his mighty limbs. It is probable that if solid ice as thick as the thickest which Nares’s party found floating in the Palæocrystic Sea—ice 200 feet thick—reached from shore to shore of the North Atlantic channel, the tidal wave would burst the barrier as easily as a rivulet rising but a few inches bursts the thin coating which has formed over it on the first cold night of autumn. But no such massive barriers have to be broken through, for the tidal wave never gives the ice an hour’s rest Maury reasons that “the tidal wave from the Atlantic can no more pass under the icy barrier to be propagated in the seas beyond, than the vibrations of a musical string can pass with its notes a fret on which the musician has placed his finger.” But the circumstances are totally different. The ice shares the motion of the tidal wave, which has not to pass under the ice, but to lift it. This, of course, it does quite as readily as though there were no ice, but only the same weight of water. The mere weight of the ice counts simply for nothing. The tidal wave would rise as easily in the British Channel if a million Great Easterns were floating there as if there was not even a cock-boat; and the weight of ice, no matter how thick or extensive, would be similarly ineffective to restrain the great wave which the sun and moon send coursing twice a day athwart our oceans. Maury’s other mistake was even more important so far as this question of an open sea is concerned. “No one,” as I wrote in 1867, “who is familiar with the astronomical doctrine of the tides, can believe for a moment that tides could be generated in a land-locked ocean, so limited in extent as the North Polar sea (assuming its existence) must necessarily be.” To raise a tidal wave the sun and moon require not merely an ocean of wide extent to act upon, but an ocean so placed that there is a great diversity in their pull on various parts of it; for it is the difference between the pull exerted on various parts, and not the pull itself, which creates the tidal wave. Now the Polar sea has not the required extent, and is not in the proper position, for this diversity of pull to exist in sufficient degree to produce a tidal wave which could be recognized. It is certain, in fact, that, whether there is open water or not near the Pole, the tides observed by Kane and Hayes must have come from the Atlantic, and most probably by the North Atlantic channel.

Captain Hall’s expedition in the Polaris (really under the command of Buddington), in 1871–72, will be probably in the recollection of most of my readers. Leaving Newfoundland on June 29, 1871, it sailed up Smith’s Sound, and by the end of August had reached the 80th parallel. Thence it proceeded up Kennedy Channel, and penetrated into Robeson Channel, the northerly prolongation of Kennedy Channel, and only 13 miles wide. Captain Hall followed this passage as far as 82° 16´ north latitude, reaching his extreme northerly point on September 3. From it he saw “a vast expanse of open sea, which he called Lincoln Sea, and beyond that another ocean or gulf; while on the west there appeared, as far as the eye could reach, the contours of coast. This region he called Grant Land.” So far as appears, there was no reason at that time why the expedition should not have gone still further north, the season apparently having been exceptionally open. But the naval commander of the expedition, Captain Buddington, does not seem to have had his heart in the work, and, to the disappointment of Hall, the Polaris returned to winter in Robeson Channel, a little beyond the 81st degree. In the same month, September, 1871, Captain Hall died, under circumstances which suggested to many of the crew and officers the suspicion that he had been poisoned.[23] In the spring of 1870 the Polaris resumed her course homewards. They were greatly impeded by the ice. A party which got separated from those on board were unfortunately unable to regain the ship, and remained on an ice-field for 240 days, suffering fearfully. The ice-field, like that on which the crew of the Hansa had to take up their abode, drifted southwards, and was gradually diminishing, when fortunately a passing steamer observed the prisoners (April 30, 1872) and rescued them. The Polaris herself was so injured by the ice that her crew had to leave her, wintering on Lyttelton Island. They left this spot in the early summer of 1872, in two boats, and were eventually picked up by a Scotch whaler.

Captain Nares’s expedition followed Hall’s route. I do not propose to enter here into any of the details of the voyage, with which my readers are no doubt familiar. The general history of the expedition must be sketched, however, in order to bring it duly into its place here. The Alert and Discovery sailed under Captains Nares and Stephenson, in May, 1875. Their struggle with the ice did not fairly commence until they were nearing the 79th parallel, where Baffin’s Bay merges into Smith’s Sound. Thence, through Smith’s Sound, Kennedy Channel, and Robeson Channel, they had a constant and sometimes almost desperate struggle with the ice, until they had reached the north end of Robeson Channel. Here the Discovery took up her winter quarters, in north latitude 81° 44´, a few miles north of Captain Hall’s wintering-place, but on the opposite (or westerly) side of Robeson Channel. The Alert still struggled northwards, rounding the north-east point of Grant Land, and there finding, not, as was expected, a continuous coast-line on the west, but a vast icebound sea. No harbour could be found, and the ship was secured on the inside of a barrier of grounded ice, in latitude 82° 31´, in the most northerly wintering-place ever yet occupied by man. The ice met with on this sea is described as “of most unusual age and thickness, resembling in a marked degree, both in appearance and formation, low floating icebergs rather than ordinary salt-water ice. Whereas ordinary ice is from 2 feet to 10 feet in thickness, that in this Polar sea has gradually increased in age and thickness until it measures from 80 feet to 120 feet, floating with its surface at the lower part 15 feet above the water-line. In some places the ice reaches a thickness of from 150 to 200 feet, and the general impression among the officers of the expedition seems to have been that the ice of this Palæocrystic Sea is the accumulation of many years, if not of centuries; “that the sea is never free of it and never open; and that progress to the Pole through it or over it is impossible with our present resources.”

The winter which followed was the bitterest ever known by man. For 142 days the sun was not seen; the mercury was frozen during nearly nine weeks. On one occasion the thermometer showed 104° below the freezing-point, and during one terrible fortnight the mean temperature was 91° below freezing!