Now in May, 1876, as we have seen, the wave reached Hawaii at about a quarter to five in the morning, corresponding to about ten, Peruvian time. Since, then, the earthquake was felt in Peru at half-past eight on the previous evening, it follows that the wave, if it travelled directly from Peru, must have taken about 13½ hours—or an hour and a half longer, in travelling from Peru to the Sandwich Isles, than it took in August, 1868. This is unlikely, because ocean-waves travel nearly at the same rate in the same parts of the ocean, whatever their dimensions, so only that they are large. We have, then, in the difference of time occupied by the wave in May, 1876, and in August, 1868, in reaching Hawaii, some confirmation of the result to which we were led by the arrival of the wave simultaneously at all the islands of the Sandwich group—the inference, namely, that the observed wave had reached these islands after reflection from the Californian shore-line. As the hour when the direct wave probably reached Hawaii was about a quarter past three in the morning, when not only was it night-time but also a time when few would be awake to notice the rise and fall of the sea, it seems not at all improbable that the direct wave escaped notice, and that the wave actually observed was the reflected wave from California. The direction, also, in which the oscillation was first observed corresponds well with this explanation.
It is clear that the wave which traversed the Pacific in May, 1876, was somewhat inferior in size to that of August, 1868, which therefore still deserves to be called (as I then called it) the greatest sea-wave ever known. The earthquake, indeed, which preceded the oceanic disturbance of 1868 was far more destructive than that of May, 1876, and the waves which came in upon the Peruvian and Bolivian shores were larger. Nevertheless, the wave of May, 1876, was not so far inferior to that of August, 1868, but that its course could be traced athwart the entire extent of the Pacific Ocean.
When we consider the characteristic features of the Peruvian and Chilian earthquakes, and especially when we note how wide is the extent of the region over which their action is felt in one way or another, it can scarcely be doubted that the earth’s Vulcanian energies are at present more actively at work throughout that region than in any other. There is nothing so remarkable, one may even say so stupendous, in the history of subterranean disturbance as the alternation of mighty earth-throes by which, at one time, the whole of the Chilian Andes seem disturbed and anon the whole of the Peruvian Andes. In Chili scarcely a year ever passes without earthquakes, and the same may be said of Peru; but so far as great earthquakes are concerned the activity of the Peruvian region seems to synchronize with the comparative quiescence of the Chilian region, and vice versâ. Thus, in 1797, the terrible earthquake occurred which is known as the earthquake of Riobamba, which affected the entire Peruvian earthquake region. Thirty years later a series of tremendous throes shook the whole of Chili, permanently elevating its long line of coast to the height of several feet. During the last twelve years the Peruvian region has in turn been disturbed by great earthquakes. It should be added that between Chili and Peru there is a region about five hundred miles in length in which scarcely any volcanic action has been observed. And singularly enough, “this very portion of the Andes, to which one would imagine that the Peruvians and Chilians would fly as to a region of safety, is the part most thinly inhabited; insomuch that, as Von Buch observes, it is in some places entirely deserted.”
One can readily understand that this enormous double region of earthquakes, whose oscillations on either side of the central region of comparative rest may be compared to the swaying of a mighty see-saw on either side of its point of support, should be capable of giving birth to throes propelling sea-waves across the Pacific Ocean. The throe actually experienced at any given place is relatively but an insignificant phenomenon: it is the disturbance of the entire region over which the throe is felt which must be considered in attempting to estimate the energy of the disturbing cause. The region shaken by the earthquake of 1868, for instance, was equal to at least a fourth of Europe, and probably to fully one-half. From Quito southwards as far as Iquique—or along a full third part of the length of the South American Andes—the shock produced destructive effects. It was also distinctly felt far to the north of Quito, far to the south of Iquique, and inland to enormous distances. The disturbing forces which thus shook 1,000,000 square miles of the earth’s surface must have been of almost inconceivable energy. If directed entirely to the upheaval of a land region no larger than England, those forces would have sufficed to have destroyed utterly every city, town, and village within such a region; if directed entirely to the upheaval of an oceanic region, they would have been capable of raising a wave which would have been felt on every shore-line of the whole earth. Divided even between the ocean on the one side and a land region larger than Russia in Europe on the other, those Vulcanian forces shook the whole of the land region, and sent athwart the largest of our earth’s oceans a wave which ran in upon shores 10,000 miles from the centre of disturbance with a crest thirty feet high. Forces such as these may fairly be regarded as cosmical; they show unmistakably that the earth has by no means settled down into that condition of repose in which some geologists still believe. We may ask with the late Sir Charles Lyell whether, after contemplating the tremendous energy thus displayed by the earth, any geologist will continue to assert that the changes of relative level of land and sea, so common in former ages of the world, have now ceased? and agree with him that if, in the face of such evidence, a geologist persists in maintaining this favourite dogma, it would be vain to hope, by accumulating proofs of similar convulsions during a series of ages, to shake the tenacity of his conviction—
“Si fractus illabatur orbis,
Impavidum ferient ruinæ.”
But there is one aspect in which such mighty sea-waves as, in 1868 and again in May, 1876, have swept over the surface of our terrestrial oceans, remains yet to be considered.
The oceans and continents of our earth must be clearly discernible from her nearer neighbours among the planets—from Venus and Mercury on the inner side of her path around the sun, and from Mars (though under less favourable conditions) from the outer side. When we consider, indeed, that the lands and seas of Mars can be clearly discerned with telescopic aid from our earth at a distance of forty millions of miles, we perceive that our earth, seen from Venus at little more than half this distance, must present a very interesting appearance. Enlarged, owing to greater proximity, nearly fourfold, having a diameter nearly twice as great as that of Mars, so that at the same distance her disc would seem more than three times as large, more brightly illuminated by the sun in the proportion of about five to two, she would shine with a lustre exceeding that of Mars, when in full brightness in the midnight sky, about thirty times; and all her features would of course be seen with correspondingly increased distinctness. Moreover, the oceans of our earth are so much larger in relative extent than those of Mars, covering nearly three-fourths instead of barely one-half of the surface of the world they belong to, that they would appeal as far more marked and characteristic features than the seas and lakes of Mars. When the Pacific Ocean, indeed, occupies centrally the disc of the earth which at the moment is turned towards any planet, nearly the whole of that disc must appear to be covered by the ocean. Under such circumstances the passage of a wide-spreading series of waves over the Pacific, at the rate of about 500 miles an hour, is a phenomenon which could scarcely fail to be discernible from Venus or Mercury, if either planet chanced to be favourably placed for the observation of the earth—always supposing there were observers in Mercury or Venus, and that these observers were provided with powerful telescopes.
It must be remembered that the waves which spread over the Pacific on August 13–14, 1868, and again on May 9–10, 1876, were not only of enormous range in length (measured along crest or trough), but also of enormous breadth (measured from crest to crest, or from trough to trough). Were it otherwise, indeed, the progress of a wave forty or fifty feet high (at starting, and thirty-five feet high after travelling 6000 miles), at the rate of 500 miles per hour, must have proved destructive to ships in the open ocean as well as along the shore-line. Suppose, for instance, the breadth of the wave from crest to crest one mile, then, in passing under a ship at the rate of 500 miles per hour, the wave would raise the ship from trough to crest—that is, through a height of forty feet—in one-thousandth part of an hour (for the distance from trough to crest is but half the breadth of the wave), or in less than four seconds, lowering it again in the same short interval of time, lifting and lowering it at the same rate several successive times. The velocity with which the ship would travel upwards and downwards would be greatest when she was midway in her ascent and descent, and would then be equal to about the velocity with which a body strikes the ground after falling from a height of four yards. It is hardly necessary to say that small vessels subjected to such tossing as this would inevitably be swamped. On even the largest ships the effect of such motion would be most unpleasantly obvious. Now, as a matter of fact, the passage of the great sea-wave in 1868 was not noticed at all on board ships in open sea. Even within sight of the shore of Peru, where the oscillation of the sea was most marked, the motion was such that its effects were referred to the shore. We are told that observers on the deck of a United States’ war steamer distinctly saw the “peaks of the mountains in the chain of the Cordilleras wave to and fro like reeds in a storm;” the fact really being that the deck on which they stood was swayed to and fro. This, too, was in a part of the sea where the great wave had not attained its open sea form, but was a rolling wave, because of the shallowness of the water. In the open sea, we read that the passage of the great sea-wave was no more noticed than is the passage of the tidal-wave itself. “Among the hundreds of ships which were sailing upon the Pacific when its length and breadth were traversed by the great sea-wave, there was not one in which any unusual motion was perceived.” The inference is clear, that the slope of the advancing and following faces of the great wave was very much less than in the case above imagined; in other words, that the breadth of the wave greatly exceeded one mile—amounting, in fact, to many miles.
Where the interval between the passage of successive wave-crests was noted, we can tell the actual breadth of the wave. Thus, at the Samoan Isles, in 1868, the crests succeeded each other at intervals of sixteen minutes, corresponding to eight minutes between crest and trough. But we have seen, that if the waves were one mile in breadth, the corresponding interval would be only four seconds, or only one 120th part of eight minutes: it follows, then, that the breadth of the great wave, where it reached the Samoan Isles in 1868, was about 120 miles.
Now a wave extending right athwart the Pacific Ocean, and having a cross breadth of more than 120 miles, would be discernible as a marked feature of the disc of our earth, seen under the conditions described above, either from Mercury or Venus. It is true that the slope of the wave’s advancing and following surfaces would be but slight, yet the difference of the illumination under the sun’s rays would be recognizable. Then, also, it is to be remembered that there was not merely a single wave, but a succession of many waves. These travelled also with enormous velocity; and though at the distance of even the nearest planet, the apparent motion of the great wave, swift though it was in reality, would be so far reduced that it would have to be estimated rather than actually seen, yet there would be no difficulty in thus perceiving it with the mind’s eye. The rate of motion indeed would almost be exactly the same as that of the equatorial part of the surface of Mars, in consequence of the planet’s rotation; and this (as is well known to telescopists), though not discernible directly, produces, even in a few minutes, changes which a good eye can clearly recognize. We can scarcely doubt then that if our earth were so situated at any time when one of the great waves generated by Peruvian earthquakes in traversing the Pacific, that the hemisphere containing this ocean were turned fully illuminated towards Venus (favourably placed for observing her), the disturbance of the Pacific could be observed and measured by telescopists on that planet.