Electricity, then, positive or negative, however generated, passes freely along conducting substances, but is stopped by an insulating body, just as light passes through transparent substances, but is stopped by an opaque body. Moreover, electricity may be made to pass to any distance along conducting bodies suitably insulated. Thus, it might seem that we have here the problem of distant communication solved. In fact, the first suggestion of the use of electricity in telegraphy was based on this property. When a charge of electricity has been obtained by the use of an ordinary electrical machine, this charge can be drawn off at a distant point, if a conducting channel properly insulated connects that point with the bodies (of whatever nature) which have been charged with electricity. In 1747, Dr. Watson exhibited electrical effects from the discharges of Leyden jars (vessels suitably constructed to receive and retain electricity) at a distance of two miles from the electrical machine. In 1774, Le Sage proposed that by means of wires the electricity developed by an electrical machine should be transmitted by insulated wires to a point where an electroscope, or instrument for indicating the presence of electricity, should, by its movements, mark the letters of the alphabet, one wire being provided for each letter. In 1798 Béthencourt repeated Watson’s experiment, increasing the distance to twenty-seven miles, the extremities of his line of communication being at Madrid and Aranjuez. (Guillemin, by the way, in his “Applications of the Physical Forces,” passes over Watson’s experiment; in fact, throughout his chapters on the electric telegraph, the steam-engine, and other subjects, he seems desirous of conveying as far as possible the impression that all the great advances of modern science had their origin in Paris and its neighbourhood.)
From Watson’s time until 1823 attempts were made in this country and on the Continent to make the electrical machine serve as the means of telegraphic communication. All the familiar phenomena of the lecture-room have been suggested as signals. The motion of pith balls, the electric spark, the perforation of paper by the spark, the discharge of sparks on a fulminating pane (a glass sheet on which pieces of tinfoil are suitably arranged, so that sparks passing from one to another form various figures or devices), and other phenomena, were proposed and employed experimentally. But practically these methods were not effectual. The familiar phenomenon of the electric spark explains the cause of failure. The spark indicates the passage of electricity across an insulating medium—dry air—when a good conductor approaches within a certain distance of the charged body. The greater the charge of electricity, the greater is the distance over which the electricity will thus make its escape. Insulation, then, for many miles of wire, and still more for a complete system of communication such as we now have, was hopeless, so long as frictional electricity was employed, or considerable electrical intensity required.
We have now to consider how galvanic electricity, discovered in 1790, was rendered available for telegraphic communication. In the first place, let us consider what galvanic or voltaic electricity is.
I have said that electricity can be generated in many ways. It may be said, indeed, that every change in the condition of a substance, whether from mechanical causes, as, for instance, a blow, a series of small blows, friction, and so forth, or from change of temperature, moisture, and the like, or from the action of light, or from chemical processes, results in the development of more or less electricity.
When a plate of metal is placed in a vessel containing some acid (diluted) which acts chemically on the metal, this action generates negative electricity, which passes away as it is generated. But if a plate of a different metal, either not chemically affected by the acid or less affected than the former, be placed in the dilute acid, the two plates being only partially immersed and not in contact, then, when a wire is carried from one plate to the other, the excess of positive electricity in the plate least affected by the acid is conveyed to the other, or, in effect, discharged; the chemical action, however, continues, or rather is markedly increased, fresh electricity is generated, and the excess of positive electricity in the plate least affected is constantly discharged. Thus, along the wire connecting the two metals a current of electricity passes from the metal least affected to the metal most affected; a current of negative electricity passes in a contrary direction in the dilute acid.
I have spoken here of currents passing along the wire and in the acid, and shall have occasion hereafter to speak of the plate of metal least affected as the positive pole, this plate being regarded, in this case, as a source whence a current of positive electricity flows along the wire connection to the other plate, which is called the negative pole. But I must remind the reader that this is only a convenient way of expressing the fact that the wire assumes a certain condition when it connects two such plates, and is capable of producing certain effects. Whether in reality any process is taking place which can be justly compared to the flow of a current one way or the other, or whether a negative current flows along the circuit one way, while the positive current flows the other way, are questions still unanswered. We need not here enter into them, however. In fact, very little is known about these points. Nor need we consider here the various ways in which many pairs of plates such as I have described can be combined in many vessels of dilute acid to strengthen the current. Let it simply be noted that such a combination is called a battery; that when the extreme plates of opposite kinds are connected by a wire, a current of electricity passes along the wire from the extreme plate of that metal which is least affected, forming the positive pole, to the other extreme plate of that metal which is most affected and forms the negative pole. The metals commonly employed are zinc and copper, the former being the one most affected by the action of the dilute acid, usually sulphuric acid. But it must here be mentioned that the chemical process, affecting both metals, but one chiefly, would soon render a battery of the kind described useless; wherefore arrangements are made in various ways for maintaining the efficiency of the dilute acid and of the metallic plates, especially the copper: for the action of the acid on the zinc tends, otherwise, to form on the copper a deposit of zinc. I need not describe the various arrangements for forming what are called constant batteries, as Daniell’s, Grove’s, Bunsen’s, and others. Let it be understood that, instead of a current which would rapidly grow weaker and weaker, these batteries give a steady current for a considerable time. Without this, as will presently be seen, telegraphic communication would be impossible.
We have, then, in a galvanic battery a steady source of electricity. This electricity is of low intensity, incompetent to produce the more striking phenomena of frictional electricity. Let us, however, consider how it would operate at a distance.
The current will pass along any length of conducting substance properly insulated. Suppose, then, an insulated wire passes from the positive pole of a battery at a station A to a station B, and thence back to the negative pole at the station A. Then the current passes along it, and this can be indicated at B by some action such as electricity of low intensity can produce. If now the continuity of the wire be interrupted close by the positive pole at A, the current ceases and the action is no longer produced. The observer at B knows then that the continuity of the wire has been interrupted; he has been, in fact, signalled to that effect.
But, as I have said, the electrical phenomena which can be produced by the current along a wire connecting the positive and negative poles of a galvanic battery are not striking. They do not afford effective signals when the distance traversed is very great and the battery not exceptionally strong. Thus, at first, galvanic electricity was not more successful in practice than frictional electricity.
It was not until the effect of the galvanic current on the magnetic needle had been discovered that electricity became practically available in telegraphy.