Before concluding, it may be well to make a few remarks upon some misapprehensions which seem to exist as to the propriety in the first place, and the desirability in the second, of comments upon the arrangements adopted by Government astronomers to utilize particular astronomical phenomena, and upon the value of the results which may be obtained by means of such arrangements. Many seem to suppose that astronomical matters are in some sense like military or naval (warlike) manœuvres, to be discussed effectively only by those who 'are under authority, having (also) soldiers under them,' in other words by Government astronomers. It would be very unfortunate for science were this so, seeing that in that case those chiefly responsible for the selection of methods and the supervision of operations would be perfectly free from all possibility of criticism. No one under their authority would be very likely to speak unfavourably of their plans. And no one possessing higher general authority would be likely to have any adequate knowledge of astronomy to form an opinion, either as to the efficiency of the arrangements adopted in any case, or as to the significance of the results obtained. In warlike matters, to some degree, the wisdom of the strategy employed is tested by results which all can appreciate, seeing that they affect directly the well-being of the nation. Moreover, there are special reasons in these cases why in the first place there should be a complete system of subordination, and why in the second few should undertake the study of the science unless they proposed to take their part in its practical application and therefore to submit to its disciplinary system. But it is quite otherwise with the science of astronomy. The nation requires, chiefly for the regulation of its commerce, a certain number of trained astronomers, to carry out systematically observations of a certain class,—observations having in the main scarcely any closer relation to the real living science of astronomy than land surveying has to such geology as Lyell taught, or the bone-trade to the science of anatomy. The stars by their diurnal motion form the most perfect time-measurers, therefore they must be constantly timed by trained observers. The sun and moon are the most effective time-indicators for seamen, and therefore their movements must be most carefully noted. Our Nautical Almanac in fact embodies the kind of astronomical materials which Government astronomers are employed to collect and arrange. Such work may rather be called celestial surveying than astronomy. But from the days of Flamsteed, the first of our Astronomers Royal (as the chief Government astronomer is technically called) whose contemporary, Newton, discovered the great law of the universe, to those of Maskelyne and Sir G. Airy, whose contemporaries, the elder and the younger Herschel, disclosed the structure of the universe, there have always been astronomers outside the ranks of official astronomy, in no way desirous of entering those ranks, and in fact so taking their course from the beginning of their study of the science as to preclude themselves from all possibility of undertaking any official duties in astronomy. 'Non sua se voluntas,' necessarily, 'sed suæ vitæ rationes, hoc aditu laudis, qui semper optimo cuique maxime patuit, prohibuerunt:' though, indeed, it may not untruly be said that to one who apprehends the true sublimity of astronomy as a science the routine of official astronomy is by no means inviting, and probably personal tastes have had very much to do with the choice, by such men, of the more attractive departments of astronomy. Be this as it may, it is certain that the astronomers who thus keep outside the official ranks are not only free, and may not only be fully competent, to express an opinion on the arrangements made by Government astronomers, or on the results obtained by them, but as the only members of the community who are at once free and able so to do, their right to speak may often involve, in some degree, the duty of speaking. If through some mistake wrong arrangements were proposed for instance,—and all men, even officials (Herbert Spencer says, especially officials), are apt to make mistakes,—then, unless non-official astronomers, who had carefully examined the subject, expressed their doubts, it is certain that there would be no means whatever of correcting the error, or even of detecting its consequence, until many years had elapsed. The leading official astronomers would in such a case be apt, in fact they are apt enough as it is, to stand by each other,—a chief in one department commending the zeal and energy of the chief in another department, this chief in turn commending the industry and ability of the other, and so forth,—while subordinates of all ranks might be apt either to maintain a judicious silence, or else at least to avoid any utterance which would endanger their position. It may, on the one hand, be to some degree questioned whether it would be fitting that discipline should be so far neglected in such a case that a subordinate should have eyes to see, or ears to hear, or thoughts to note, any error on the part of his superior in office. And on the other hand, those who know little or nothing of astronomy can of course form no opinion on astronomical matters, however high they may be in authority outside matters scientific. To assert, then, that it is either improper or undesirable for unofficial astronomers to comment on the plans or results of astronomers employed and paid by the nation is practically equivalent to asserting that it is improper or undesirable for the work of these paid astronomers to be examined at all,—a conclusion manifestly absurd.[7]

FOOTNOTES:

[7] The following lines are from a letter of mine, which appeared in the Times of April 13, some time after the present article was written:—

'A few months ago I said in these columns that the determination of the sun's distance, then recently communicated to Parliament—namely, 93,375,000 miles—was probably some 800,000 miles too great; and I spoke of the method on which the determination was based as to some degree discredited by the wide range of difference both between that result and the mean of the best former measurements, and between the several results of which that one was itself the mean. Captain Tupman, as straightforward as he is skilful and zealous, announces as the result of a re-examination of the British observations a distance about 600,000 miles less than the above, or, more exactly, about 92,790,000 miles, as the sun's mean distance. But while he obtains from the ingress observations a mean distance of only 92,300,000 miles, he obtains from the egress observations a mean distance of about 93,040,000 miles; and the value, 92,790,000 miles, is only obtained as the mean of these two values duly weighted, the egress observations being more satisfactory than the ingress observations. 'It appears to me that the doubts which I formerly expressed as to the trustworthiness of the method employed, are to some degree justified.

'To the general public it will be more interesting to inquire what probably is the true mean distance of the sun. To this it may be replied that in all probability the sun's mean distance does not lie so much as 600,000 miles on either side of the value 92,300,000 miles' (it should be 92,400,000).


[THE PAST HISTORY OF OUR MOON.]

The moon, commonly regarded as a mere satellite of the earth, is in truth a planet, the least member of that family of five bodies circling within the asteroidal zone, to which astronomers have given the name of the terrestrial planets. There can be no question that this is the true position of the moon in the solar system. In fact, the fashion of regarding her as a mere attendant of our earth may be looked upon as the last relic of the old astronomy in which our earth figured as the fixed centre of the universe, and the body for whose sake all the celestial orbs were fashioned. In this aspect, also, the moon is a far more interesting object of research than when viewed as belonging to another and an inferior order. We are able to recognise, in her, appearances probably resulting from the relative smallness of her dimensions, and hence to derive probable information as to the condition of other orbs in the solar system which fall below the earth in point of size. Precisely as the study of the giant planets, Jupiter and Saturn, has led astronomers to infer that certain peculiarities must result from vastness of dimensions, so the study of the dwarf planets, Mars, our moon, and Mercury, may indicate the relations we are to associate with inferiority of size.