I relate the following fact, in this place, because at the same time that it gives further confirmation to the above opinion, it affords an instance in which insulation diminished the effect of the metals. I had one day laid the nearly exhausted leg of a frog upon my hand, with a piece of zinc in contact with its nerve only; and, when I touched these with a silver probe, tolerably strong contractions were excited, even when the nerve appeared dry: but when both the leg and the metals, thus disposed, were insulated by means of glass and sealing wax, the contractions were scarcely perceptible. My hand, it would appear, had, in these instances, supplied the place of the moisture in the other; and been the conducting medium between the muscles and the metals.
This communication of the muscles with the nerve, through the medium of the metals, had appeared to Dr Valli a circumstance so essential to the production of Galvani’s phenomena, that (taking it for granted they were occasioned by the action of the electrical fluid), it seems to have suggested the hypothesis, which he has offered in order to account for them.
Aware that no electrical phenomenon can possibly have place, except between the opposite states of positive and negative electricity, or, in other words, where there is a breach of equilibrium in the distribution of the electrical fluid; he supposes it to be one office of the nerves, to produce this breach of equilibrium, by continually pumping (to use his own expression) the electrical fluid from the internal parts of muscles, and in this way rendering them negative, with respect to the external surface. The brain, he makes the common receptacle for this fluid. The metals, he seems to consider in the light of a conductor, interposed between the outside of muscles and their nerves. And the rapid transmission of the fluid to restore the equilibrium, as the cause of the contractions.
He presumes his hypothesis proved from the following considerations:
I. The interval which commonly takes place between the contractions; which interval, according to him, is necessary for the restoration of the breach of equilibrium.
II. From observing, that fishermen, in order to preserve their fish from putridity, crush their brains; and thus, by interrupting the medium between the external and internal surfaces of muscles, prevent these repeated discharges of the electrical fluid, which, according to Dr Valli, hastens their putridity.
III. From finding that in general, when the sciatic nerve on one side of a living frog was divided, the other being left entire, communicating with the brain, both armed and equally excited, the limb, in which the nerve had been divided, preserved its power of contracting longer than the other. From this well devised experiment, he concludes, likewise, that animal electricity is the principle of life. That, on the side where the nerve remained entire, it was withdrawn from the muscles, and deposited in the brain. That, from the impossibility of this taking place on the other side, where the nerve was divided, it had continued in the limb, and enabled it to contract.
If it were indisputably true, as I once believed, that contractions could be excited in a limb without the metals having any communication with it, except through the medium of a nerve; this circumstance would alone be a sufficient refutation of Dr Valli’s hypothesis: but, as I have already shewn, that contractions were not in this way produced in any experiment, which I have made, when no moisture, forming a communication between the metals and the muscles, had been left adhering to the surface of the nerve, it becomes necessary to have recourse to less dubious arguments.
The Dr should have recollected that, in cases of a breach of equilibrium in the distribution of the electrical fluid, all that is required, in order to restore equality of distribution, is, the interposition of a single conducting substance between the place in which it abounds, and that in which there is a deficiency. Whereas, in the phenomena, which he attempts to explain, two conducting substances are necessary to the effect.
When a separated limb is placed under water, one would naturally imagine, that from the perfect communication, which is then formed between the external surfaces of muscles and their nerves, no breach of equilibrium could possibly have place: yet we find Galvani’s phenomena even more readily produced in this situation, than when both muscles and nerves are free from surrounding moisture.