The portion of the antibrachium of the Macrauchenia which is preserved, presents a condition of the radius and ulna intermediate to those which respectively characterize the same bones in the Pachyderms and Camels. In the former the radius and ulna are separate bones, united in the prone position by ligament, yet so that the movement of supination cannot be performed; in the ordinary Ruminants they are partially joined by bony confluence, which rarely extends to the proximal extremities; in the Camel and Llama the anchylosis of the radius and ulna is so complete, that no trace of their original separation can be perceived, and the olecranon appears but as a mere process of the radius.

In the Macrauchenia the anchylosis of the radius and ulna is also complete, but the boundary line of the two originally distinct bones is very manifest, and the proportion which each contributes to the great articulating surface for the distal end of the humerus is readily distinguishable. About a sixth part of this surface is due to the head of the radius, which enters into the composition of the anterior and outer part of the articulation, and its extent is defined by a depressed line describing a pretty regular curve, with the concavity directed forwards and a little outwards. (a, fig. 1, Pl. [X].) Just below the articular surface a strong triangular rugged protuberance projects from the front of the head of the radius, for the attachment of the tendon of the biceps. The line of separation of the radius and ulna is indicated on the inner side of the head of the radius by a deep and narrow fissure extending downwards from below the anterior part of the articulating surface; and on the outer side by a broad groove leading upwards to a deep pit near the proximal end of the antibrachium. We may see by the direction of the head of the radius which is thus defined, that it crosses obliquely in front of the ulna, as in the Elephant, Hippopotamus, and other Pachyderms, and that the bones are anchylosed in the prone condition: below this fissure and groove, which mark the interosseous line, the radius and ulna become blended together into one compact bone, which is flattened from before backwards, with a well marked ridge on the outer side; and excavated by a single medullary cavity, the compact walls of which present a general thickness of one-third of an inch.

The proximal articular surface or sigmoid cavity of the antibrachium, constituted as above described, resembles that of the Palæothere, Tapir, and the generality of the Pachyderms in having two depressions, instead of three, as in the Anoplothere, and Ruminants. The Hippopotamus has a slight tendency to the latter structure, which is also less marked in the Camel than in the ordinary Ruminants. In its general form the sigmoid cavity of the Macrauchene resembles that of the Hippopotamus more than that of the Camel. In the Camel this articular surface is traversed transversely by a broad, shallow, and slightly roughened tract, which divides the smooth surface of the joint into two parts, one forming the anterior horizontal surface due to the conjoined radius and ulna, the other forming the vertical concave surface on the anterior part of the base of the olecranon. In the Hippopotamus there is, as it were, an attempt at a similar division of the articulating surface at the proximal end of the antibrachial bones; a deeper and rougher depression encroaches upon the articulation from its outer side, but stops when it has reached half-way across. In the Macrauchenia the roughened surface, (b. fig. 1, Pl. [X].) commencing also at the outside, extends only one-third of the way across the articular surface: it is, however, as shallow as in the Camel. The articular surface on the anterior part of the base of the olecranon is broader in the Hippopotamus than in the Camel; but in the Macrauchene it is twice as broad as in the Hippopotamus. The size of the olecranon in the Macrauchene exceeds that of the Hippopotamus, and à fortiori that of the Camel: indeed in its general magnitude the Macrauchenia must have fully equalled the largest Hippopotamus; but it no doubt had a more shapely, and less broad and bulky trunk. The olecranon of the Macrauchenia differs in shape, both from that of the Camel and Hippopotamus; it terminates above in a three-sided cone with an obtuse apex; and presents a well-marked protuberance at the outer side of the base, which is not present in either the Camel or Hippopotamus. There is also a strong rugged ridge on the back part of the olecranon which makes an angle before sinking into the level of the ulna below.

The confirmation of the close affinity of the Macrauchenia to the Pachydermatous Order, which the structure of the cervical vertebræ alone might have rendered very doubtful, is afforded by the bones of the right fore-foot (Pl. [XI].); these are fortunately in so perfect a condition, as to make it certain that this interesting quadruped had three toes on the fore-feet, and not more; and that the fully developed metacarpal bones are distinct, and correspond in number with the toes, and are not anchylosed into a single cannon bone, as in the Ruminants. The bones preserved are the metacarpals, proximal phalanges, and middle phalanges of each of the three toes, and the distal phalanx of the innermost toe.

The proximal end of the innermost metacarpal bone presents three articular surfaces; the middle facet is the largest, and the two lateral ones slope away from it at an angle of 45°. The middle facet is broad and slightly convex in front, narrow and concave behind; the distal articular surface of the trapezoides must have corresponded with this surface; the outer facet is narrow, flat, extends from the fore to the back part of the head of the bone, and must have been adapted to a corresponding surface on the os magnum; the inner facet is the smallest, presents a triangular form, and is situated towards the back part of the head of the metacarpal bone; it indicates the existence of a rudimental metacarpal bone, or vestige of a pollex. Below the outermost of the lateral surfaces there is a crescentic articular surface with its concavity directed outwards and downwards (fig. 2, Pl. [XV].), against which a corresponding convex articular surface of the middle metacarpal abuts, (fig. 3, Pl. [XV].) External to this surface the proximal end of the middle metacarpal bone presents two articular surfaces for the carpus; the larger one, which was adapted to the os magnum, is horizontal, broad and convex before, narrow and concave behind; the outermost facet is a small triangular surface inclined downwards to the level of the articulating surface of the outermost metacarpal. It also presents a posterior vertical articular surface for a sesamoid bone. The proximal extremity of the outer metacarpal bone is joined to the middle metacarpal, not by one semilunar surface, but by two separate articulations of small size (fig. 4 and 5, Pl. [XV].); it presents a single large slightly convex articular surface for the os magnum, of an irregular semicircular form, with the convexity of the curve turned outwards.

The metacarpus increases in breadth as it approaches the phalanges; the two lateral metacarpals bending slightly away from the middle one, and expanding towards their distal extremities: the middle bone presents a symmetrical figure except at its proximal extremity (fig. 2, Pl. [XI].) The distal articulating facet of each of the metacarpal bones extends so far upon both the anterior and posterior surfaces as to describe more than a semicircle (fig. 3, Pl. [XI].); in the two lateral metacarpals it is traversed throughout by a longitudinal convex ridge dividing it into two equal lateral parts; the ridge is most produced on the posterior half of the joint (fig. 4, Pl. [XI].): in the middle metacarpal this ridge subsides before it reaches the anterior part of the articular surface.

The proximal extremity of the middle proximal phalanx presents a posterior notch corresponding to the above partially developed ridge: the proximal extremities of the lateral phalanges are traversed by a middle longitudinal depression, and two lateral shallow concavities (fig. 6, Pl. [XI].); but these are of such an extent as to be in contact with only a part of the convexity above, which therefore was doubtless adapted to a sesamoid bone on each side of the longitudinal ridge. The structure of the above described joints proves that the motion of the toe upon the metacarpus was much freer and more extensive than in the Rhinoceros, which is the only existing Ungulate mammal which presents the tridactyle structure in the fore-foot. In this species the metacarpo-phalangeal articulations exhibit only a slight trace of the longitudinal ridges and grooves which are confined to the posterior part of the joint; these are more developed in the Camelidæ; but the Hog and Horse in this respect approach nearer to the Macrauchene, though the structure of the metacarpo-phalangeal joints in the Hog falls far short of the compactness and strength combined with freedom of play in flexion and extension which distinguish those of the Macrauchene. The Palæotherium medium most resembles the Macrauchene in the structure of the trochlear metacarpo-phalangeal joints; but both in this species,[[23]] and the Pal. crassum[[24]] the articular surface at the distal end of the metacarpal is relatively narrower than in the Macrauchenia; moreover all the species of the extinct Palæothere differ from the Macrauchene in the greater size and strength of the middle as compared with the lateral metacarpals.

The articulation at the distal extremity of the proximal phalanges (fig. 5, Pl. [XI].) is simple, and not divided into two pulleys by a longitudinal ridge; it is slightly concave from side to side; but in its extent upon the anterior and posterior surfaces of the bone indicates a freedom of flexion and extension of the toes, which harmonizes with the structure of the joint above.

The proximal articulating surfaces of the second phalanges (fig. 7, Pl. [XI].) corresponds of course to those to which they are adapted; they are, however, characterized by sending upwards an obtuse process from the middle of their anterior margin. The distal articulating surfaces (fig. 8, Pl. [XI].) resemble those of the proximal phalanges, but extend further upon the back part of the phalanx than the front, indicating the more horizontal position of the second phalanges.

The last phalanx, does not resemble the neatly defined ungulate phalanges of the Ruminantia, and Solipedia, but has the irregular form characteristic of those of the Pachydermata. It is wedge-shaped, broader than it is long, with a rugged surface, except where it plays upon the distal end of the second phalanx, where it is slightly concave in one direction, and convex in the other, (figs. 7 and 9, Pl. [XI].) A portion of this phalanx extends backwards behind the articular surface, as in the corresponding bone of the Palæothere and Rhinoceros.