The relative length of the fore and hind extremities cannot be precisely determined from the present imperfect skeleton of the Scelidothere; but there is good evidence for believing, that the fore extremity was the shortest. The humerus is shorter than the femur by one-ninth part of the latter bone; and the radius, which wants only the distal epiphysis, must have been shorter than the humerus. Now the relative development of the fore and hind legs is one of the points to be taken into consideration in an attempt to determine the habits and nature of an extinct mammal.
In climbing animals the prehensile power is more essential to the hinder than to the fore parts or extremities. In the leech the principal sucker is in the tail; and higher organized climbers, in like manner, depend mainly on their posterior claspers in descending trees, and hold on by means of them whilst selecting the place for the next application of those at the fore part of the body, whether their place be supplied by the beak, as in the Maccaws, or the fore-feet or hands in the Mammalia.
But, although we perceive the hinder limbs to be the last to lose the advantageous structure of the hand in the Quadrumanous species, and notwithstanding that the tail is for this purpose sometimes specially organized to serve as a prehensile instrument, yet we find that the power of grasping the branches of trees by either legs or tail is never maintained at the expense of undue bulk and weight of those organs. On the contrary, as the fore-limbs are the main instruments in the active exertions of climbing, so they are the strongest as well as the longest in all the best climbers, and the weight of the body which they have to drag along is diminished by dwarfish proportions of the hinder limbs, as in the Orangs and the Sloths.
Can those huge quadrupeds have been destined to climb that had the pelvis and hinder extremities more ponderous and bulky in proportion to the fore parts of the body than in any other known existing or extinct vertebrate animals?
M. Lund argues for the scansorial character of the Megalonyx, because its anterior extremities are longer than the posterior ones; but if they somewhat exceed the hind legs in length, how vastly inferior are they in respect of their breadth and thickness. The prehensile faculty of the hinder limbs of the best climbers, as the Sloths, Orangs, and Chameleons is by no means dependent on the superior mass of muscle and bone which enters into their conformation, but is associated with the very reverse conditions.
It is impossible to survey the discrepancy of size between the femur and the humerus of the Scelidothere, as exhibited in Pl. [XX]., without a conviction that it relates to other habits than those of climbing trees. The expanse of the sacrum, the evidence of the muscular masses employed in working the hind legs and tail, which is afforded by the capacity of the cavity lodging the part of the spinal marrow from which the nerves of those muscles were derived, both indicate the actions of the hind legs and tail to have been more powerful and energetic than would be required for mere prehension: and the association of hinder extremities so remarkable for their bulk, with a long and powerful tail, forbids my yielding assent to the speculation set forth by M. Lund, as to the prehensile character of the tail of the Megalonyx.
Astragalus.—In the examination of this characteristic bone I have kept in view the question of the habits of the Megatherioid quadrupeds in general, and the especial affinities of the Scelidotherium, in illustration of which I shall notice at the same time the peculiarities of the astragalus of the Sloth, Megatherium and Armadillo.[[54]]
The upper articular surface of the astragalus of the Scelidotherium (Pl. [XXVI]. fig. 4.), presents, in its transverse contour, two convex pulleys, a and b, and an intermediate concavity, forming one continuous articular surface. The external or fibular trochlea (a) is strictly speaking convex only at its posterior part, the upper surface gradually narrowing to a ridge, as it advances forwards from which, the inner and outer parts slope away at an angle of 35°.
The tibial[[55]] convexity (b) is more regular and less elevated, it has only half the antero-posterior extent of the outer pulley; its marginal contour forms an obtuse angle at the inner side.
In the Megatherium the upper articular surface of the astragalus is also divided into two trochleæ, of which the one on the fibular side (fig. 3, a), is of much greater relative size and extent than the tibial one (b), and is raised nearly four inches above the level of the latter, although in the oblique position in which the bone is naturally placed in the skeleton, the highest part of each convexity is on the same level. The fibular trochlea differs also from that in the Scelidothere in being regularly convex in the transverse as well as the antero-posterior direction. The tibial convexity resembles that in the Scelidothere, save in its smaller relative size; its internal margin likewise forms an angular projection below the internal malleolus.