96. Soldering Tin Plate.

If the plate be new and clean, a little resin or its solution in alcohol is all that is necessary as a flux. If the tin plate is rusty the rust must be removed and the clean iron, or rather mild steel, surface exposed. The use of chloride of zinc is practically essential in this case. Tin plate is often spotted with rust long before it becomes rusty as a whole, when, of course, it may be regarded as worn out, and such rust spots are most conveniently removed by means of the plumber's shave-hook. The shave-hook is merely a peculiarly shaped hard steel scraping knife on a handle (Fig. 79).

Fig.

79

With tin plate the soldering of long joints is often necessary. The plate must be temporarily held in position either by binding with iron wire, fastening by clamps, or holding by an assistant. The flux is applied and the iron run slowly along the joint. Enough solder is used to completely float the tip of the iron. By arranging the joint so that it slopes downward slightly, and commencing at the upper end, the solder may be caused to flow after the iron, and will leave a joint with the minimum permissible amount of solder in it. By regulating the slope, heat of iron, etc., any desired quantity of solder may be run into the joint.

[§ 97. Soldering Zinc. —]

Zinc alloys with soft solder very easily, and by so doing entirely spoils it, making, it "crumbly," dirty, and preventing it running. Consequently, in soldering up zinc great care must be taken to prevent the solder becoming appreciably contaminated by the zinc. To this end the zinc surfaces are cleaned by means of a little hydrochloric acid, which is painted on instead of chloride of zinc. Plenty of solder is melted on to the work, and is drawn along over the joint by a single slow motion of the soldering bit. The iron must be just hot enough to make the solder flow freely, and it must never be rubbed violently on the zinc or allowed to linger in one spot; the result of the latter action will be to melt a hole through the zinc, owing to the tendency of this metal to form an easily fusible alloy with the solder.

The art of soldering zinc is a very useful one in the laboratory. The majority of physicists appear to overlook the advantages of zinc considered as a material for apparatus construction. It is light, fairly strong, cheap, easily fusible, and yet hard and elastic when cold. It may be worked as easily as lead at a temperature of, say, 150° to 200° C., and slightly below the melting-point (423° C.) it is brittle and may & powdered. The property of softening at a moderate temperature is invaluable as a means of flattening zinc plate or shaping it in any way. During the work it may be held by means of an old cloth. Zinc sheet which has been heated between iron plates and flattened by pressure retains its flatness very fairly well after cooling.

[§ 98. Soldering other Metals —]