The castings may be removed from the mould by slightly heating the latter, but many breakages result. Insulators made on this plan are much less affected by the condensation of moisture from the air than anything except fused quartz. They are, however, very weak mechanically, and apt to crack by exposure to such changes of temperature as go on from day to day. It is clear, however, that in spite of this their magnificent electrical properties fit them for many important uses.

If the sulphur be cooled rapidly from 170° C. or over, a mixture of the crystalline and amorphous varieties of sulphur is obtained. This mixture is very much stronger and tougher than the purely crystalline substance, and may be worked with ordinary hardwood tools into fairly permanent plates, rods, etc. Sheets of pure thick filter paper may also be dipped into sulphur at 170° C., at which temperature air and moisture are mostly expelled, and such sheets show a very considerable insulating power. The sulphur does not penetrate the paper, which therefore merely forms a nucleus.

Cakes of the crystalline or mixed varieties may be made by grinding up some purified sulphur, moistening it with redistilled carbon bisulphide, or toluene, or even benzene (C6H6), and pressing it in a suitable mould under the hydraulic press. The plates thus formed are porous, but are splendid insulators, especially if made from the crystalline variety of sulphur, and they appear to keep their shape very well, and do not crack with ordinary temperature changes.

The metals which resist the action of sulphur best are gold and aluminium; while platinum and zinc are practically unacted upon at temperatures below a red heat — in the former case, — and below the boiling-point of sulphur in the latter.

A very convenient test of the purity of sulphur is the colour assumed by it when suddenly cooled from the temperature at which it is viscous. Quite pure sulphur remains of a pale lemon yellow under this treatment, but the slightest trace of impurity, such as arises from dust containing organic matter, stains the sulphur, and renders it darker in colour.

[§ 103. Fused Quartz. —]

This is on the whole the most reliable and most perfect insulator for general purposes. No exact numerical data have been obtained, but the resistivity must certainly be of the same order as that of pure sulphur at its best. The influence of the moisture of the air also reaches its minimum in the case of quartz, as was originally observed by Boys.

As yet, however, the material can only be obtained in the form of rods or threads. For most purposes rods of about one-eighth of an inch in diameter are the most convenient. These rods may be used as insulating supports, and succeed perfectly even if they interpose less than an inch of their length to electrical conduction. The sketch (Figs. 81 and 81A) shows (to a scale of about one-quarter full size) a complete outfit for elementary electrostatic experiments, such as has been in use in the writer's laboratory for five years. With these appliances all the fundamental experiments may be performed, and the apparatus is always ready at a moment's notice.

Fig.