The first object is attained as follows. The ebonite ring A is bored with four radial holes, through which are slipped from the inside the fused quartz bolt-headed pins B. The coil already soaked in hard paraffin is placed concentrically in the ring A by means of a special temporary centering stand. The space between the coil and the ring is filled up with hard paraffin, and this holds the quartz pins in position. The system of ebonite ring, coil, and pins is then fastened into the gun-metal coil carrier, which is cut away entirely, except near the edges, where it carries the pin brackets C. These brackets can swivel about the lower fastening at E before the latter is tightened up.
The coil is now adjusted in the adjusting stand to be concentric with the axis of symmetry of the coil carrier, and the supporting pins are slipped into slot holes cut in the brackets, the brackets being swivelled as much as necessary to allow of this. When the pins are all inserted the brackets are screwed up by the screws at E. The pins are then cemented firmly to the brackets by a little plaster of Paris. The coil carrier can now be adjusted to the galvanometer frame by means of screws at D, which pass through wide holes in the carrier and bold the latter in position by their heads. In the sectional plan the parts of the galvanometer frame are shown shaded. The front of the frame at F F is of glass, and the back of the frame is also made of glass, though this is not shown in the section.
A represents an ebonite ring into which the wire coil is cemented by means of paraffin. B B B B are quartz pins, with heads inside the ebonite ring. C C C are slotted brackets adjustable to the pins and capable of rotation by releasing the screws E E. D D are the screws holding the coil carriage to the galvanometer framework. These screws pass through large holes in the carriage so as to allow of some adjustment.
Fig.
82.
Fig.
83.