Voltage 300 volts on a plate 0.2 mm. thick, duration of charge ten minutes, temperature about 20° C. To get this result the mica must be most carefully dried. This and other facts indicate that the so-called residual charge on ordinary condensers is, to a very large extent, due to the creeping of the charge from the armatures over the more or less conducting varnished surfaces of the mica, and its slow return on discharge.
This source of residual charge was carefully guarded against by Rowland and Nichols (Phil. Mag. 1881) in their work on quartz, and is referred to by M. Bouty, who adduces some experiments to show that his own results are not vitiated by it. On the other hand, M. Bouty shows that a small rise in temperature enormously affects the state of a mica surface, and that the surface gets changed in such a way as to become very fairly conducting at 300° C. Also anybody can easily try for himself whether exposing a mica condenser plate which has been examined in presence of phosphorus pentoxide to ordinary air for five minutes will not enormously increase the residual charge, as has always been the case in the writer's experience, and if so, it is open to him to suggest some cause other than surface creeping as an explanation.
M. Bouty, using less perfectly dried mica, did not get so good a result as to smallness of residual charge as the one above quoted.
The chief use of mica for laboratory purposes depends on the ease with which it can be split, and also upon the fact that it may be considerably crumpled and bent without breaking. It therefore makes an excellent dielectric in so far as convenience of construction is concerned in the preparation of condensers, and lends itself freely to the construction of insulating washers or separators of any kind. Its success as a fair insulator at moderate temperatures has led to its use in resistance thermometers, where it appears to have given satisfaction up to, at all events, 400° C.
It is worth a note that according to Werner Siemens, who had immense experience (Wied. Ann. vol. clix.), soapstone is the only reliable insulator at a red heat, but, no doubt, a good deal depends on the particular specimen investigated.
[§ 107. Use of Mica in Condensers. —]
If good results are desired it is essential to select the mica very carefully. Pieces appreciably stained, — particularly if the stain is not uniformly distributed, — cracked pieces, and pieces tending to flake off in patches should be rejected. The best samples of mica that have come under the writer's observation are those sheets sold for the purpose of giving to silver photographic prints that hideous glazed surface which some years ago was so popular.
Sheets of mica about 0.1 to 0.2 mm. thick form good serviceable condenser plates, and will certainly stand a pressure of 300 volts, and most likely a good deal more. The general practice in England seems to have been to build up condensers of alternate sheets of varnished or paraffined-mica and tin-foil.
This practice is open to several objections. In the first place, the capacity of a condenser made in this way varies with the pressure binding the plates together. In the second place, the amount of mica and tin-foil required is often excessive in consequence of the imperfect contact of these substances. Again, the inevitable air film between the mica and tin-foil renders condensers so made unsuitable for use with alternating currents, owing to the heating set up through air discharges, and which is generally, though often (if not always) wrongly, attributed to dielectric hysteresis.
These imperfections are to a great extent got over by M. Carpentier's method of construction, which is, however, rather more costly both in material and labour. On the other hand, wonderful capacities are obtained with quite small amounts of mica. M. Bouty mentions a condenser of one microfarad capacity weighing 1500 grms. and contained in a square box measuring 12 centimetres on the side, and about 3 centimetres thick.