This substance, discovered by Martino and described by Bottomley (Phil. Proc. Roy. Soc. 1885), is an alloy of nickel, zinc, copper, and 1 per cent to 2 per cent of tungsten, but I have not been able to obtain an analysis of its exact composition. It appears to be difficult to get the tungsten to alloy, and it has to be added to part of the copper as phosphide of tungsten, in considerably greater quantity than is finally required. The nickel is added to part of the copper and the phosphide of tungsten, then the zinc, and then the rest of the copper. The alloy requires to be remelted several times, and a good deal of tungsten is lost by oxidation.
The alloy is of a fine white colour, and is very little affected by air — in fact, it is to some extent untarnishable. The specific resistance will be seen to be about one and a half times greater than that of German silver, and the temperature coefficient is about 0.021 per cent per degree C. (i.e. about nineteen times less than copper, and half that of German silver). To all intents and purposes it may be regarded as German silver with 1 per cent to 2 per cent of tungsten. It does not appear to have been particularly examined for secular changes of resistance.
118. German Silver. — This material has been exhaustively examined of late years by Klemencic and by Feussner and St. Lindeck. Everybody agrees that German silver, as ordinarily used for resistances, and composed of copper four parts, zinc two parts, nickel one part, is very ill-fitted for the purpose of making resistance standards. This is due
(1) to its experiencing a considerable increase in resistance on winding. Feussner and St. Lindeck found an increase of 1 per cent when German silver was wound on a core of ten wire diameters.
(2) To the fact that the change goes on, though with gradually decreasing rate, for months or years;
(3) to the fact that the resistance is permanently changed (increased) by heating to 40° C. or over. By "artificially ageing" coils of German silver by heating to 150° C., say for five or six hours, its permanency is greatly improved, and it becomes fit for ordinary resistance coils where changes of, say, 1/5000 do not matter.
It is a remarkable property of all nickel alloys containing zinc that their specific resistance is permanently increased by heating, whereas alloys which do not contain zinc suffer a change in the opposite direction. The manufacturers of German silver appear to take very little care as to the uniformity of the product put on the market; some so-called German silver is distinctly yellow, while other samples are bright and white.
It is noted by Price (Measurements of Electrical Resistance, p. 24) that German silver wire is apt to exhibit great differences of resistance within quite short lengths. This has been my own experience as well, and is a great drawback to the use of German silver in the laboratory, for it makes it useless to measure off definite lengths of wire with a view to obtaining an approximate resistance. In England German silver coils are generally soaked in melted hard paraffin. In Germany, at all events at the Charlottenburg Institute, according to St. Lindeck — coils are shellac-varnished and baked. In any case it appears to be essential to thoroughly protect the metal against atmospheric influence.
In the opinion of Matthieson and of Klemencic the 10 per cent silver, 90 per cent platinum alloy is the one most suitable for resistance standards. At all events, it has stood the test of time, for, with the following exceptions, all the British Association coils constructed of it from 1867 to the present day have continued to agree well together. The exceptions were three one-ohm coils, which permanently increased between 1888 and 1890, probably through some straining when immersed in ice. One coil changed by 0.0006 in 1 between the years 1867 and 1891. According to Klemencic, absolute permanency is not to be expected even from this alloy.