Platinum 90 per cent, iridium 10 per cent. This material was prepared in some quantity at the cost of the French Government, and distributed for test about 1886. Klemencic got some of it as representing Austria, and found it behaved very like the platinum silver alloy just discussed. The temperature coefficient is, however, higher than for platinum silver (0.00126 as against 0.00027). The mechanical properties of the alloy are, however, much better than those of the silver alloy; and in view of the experience with B. A. standards above quoted, it remains an open question whether, on the whole, it would not be the better material for standards, in spite of its higher price. Improvements in absolute measurements of resistance, however, may render primary standards superfluous.

[§ 121. Manganin. —]

Discovered by Weston — at all events as to its application to resistance coils. A glance at the diagram will exhibit its unique properties, on account of which it has been adopted by the Physikalisch Technischen Reichsanstalt for resistance standards. The composition of the alloy is copper 84 per cent, manganese 12 per cent, nickel 4 per cent., and it is described as of a steel-gray colour. Unfortunately it is apt to oxidise in the air, or rather the manganese it contains does so, so that it wants a very perfect protection against the atmosphere.

Like German silver, manganin changes in resistance on winding, and coils made of it require to be artificially aged by heating to 150° for five hours before final adjustment. The annealing cannot be carried out in air, owing to the tendency to oxidation. The method adopted by St. Lindeck (at all events up to 1892) is to treat the coil with thick alcoholic shellac varnish till the insulation is thoroughly saturated, and then to bake the coil as described. The baking not only anneals the wire, but reduces the shellac to a hard and highly insulating mass.

Whether stresses of sufficient magnitude to produce serious mechanical effects can be set up by unequal expansion of wire and shellac during heating and cooling is not yet known, but so far as tested (and it must be presumed that the Reichsanstalt tests are thorough) no difficulty seems to have been met with. In course of time, however, probably the best shellac coating will crack, and then adieu to the permanency of the coil! This might, of course, be obviated by keeping the coil in kerosene, which has no action on shellac, but which decomposes somewhat itself.

The method of treatment above described suffices to render coils of manganin constant for at least a year (in 1892 the tests had only been made for this time) within a few thousands per cent. Manganin can be obtained in sheets, and from this material standards of 10-2, 10-3, and 10-4 ohms are made by soldering strips between stout copper bars, and these are adjusted by gradually increasing their resistance by boring small holes through them. The solder employed is said to be "silver."

Mr. Griffiths (Phil. Trans. vol. clxxxiv. [1893], A, p. 390) has had some experience with manganin carrying comparatively heavy currents, under which circumstances its resistance when immersed in water was found to rise in spite of the varnish which coated it. Other experiments in which the manganin wire was immersed in paraffin oil did not exhibit this effect, though stronger currents were passed.

On the whole, manganin appears to be the best material for coil boxes and "secondary" resistance standards. Whether it is fit to rank with the platinum alloys as regards permanency must be treated as an open question.

[§ 122. Other Alloys. —]

The following tables, taken from the work of Feussner and St. Lindeck, Zeitschrift fuer Instrumenten Kunde, 1889, vol. ix. p. 233, together with the following notes, will suffice.