It may be mentioned here that if the surface is in any way scratched the rouge will lodge in the scratches with great persistence, and an expert can generally tell from the appearance of scratches what kind of polishing powder has been employed.

The persistence with which rouge clings to a rough surface of glass is rather remarkable. Some glass polishers prefer to use putty powder as a polishing material, and it is sometimes said to act more quickly than rouge; from my rather limited experience I have not found this to be the case, but it may have merits that I do not know of. Is it possible that its recommendation lies in the fact that it does not render scratches so obtrusively obvious as rouge does?

Rouge is generally made in two or more grades. The softer grade is used for polishing silver, and is called jewellers' rouge. The harder grade, suitable for glass polishing, is best obtained from practical opticians (not mere sellers of optical instruments). I mean people like Messrs. Cook of York. Many years ago I prepared my own hard rouge by precipitating ferrous sulphate solution by aqueous ammonia, washing the precipitate, and heating it to a red heat. The product was ground up with water, and washed to get rid of large particles. This answered every purpose, and I could not find that it was in any way inferior to hard rouge as purchased. The same precipitate heated to a lower temperature is said to furnish a softer variety of rouge; at all events, it gives one more suitable for polishing speculum metal. Lord Rosso used rouge heated to a dull redness for this purpose.

Rouge, whether made or bought, should always be washed to get rid of grit. I ought to add that not the least remarkable fact about the polishing is the extraordinarily small quantity of the polishing material requisite, which suggests that the process of polishing is not by any means the same as that of exceptionally fine grinding. Is it possible that the chief proximate cause of the utility of rouge is to be sought in its curious property of adhering to a rough glass surface, causing it, so to speak, to drag the glass off in minute quantities, and redeposit it after a certain thickness has been attained on another part of the surface?

[§ 63. Centering. —]

When a lens is ground and polished it will almost always happen that the axis of revolution of its cylindrical edge is inclined to the axis of revolution of its curved surfaces. Since in practice lenses have to be adjusted by their edges, it is generally necessary to adjust the edge to a cylinder about the axis of figure of the active surfaces. This is best done on a lathe with a hollow mandrel.. The lens is chucked on a chuck with a central aperture — generally by means of pitch or Regnault's mastic, or "centering" cement for small lenses — and a cross wire is fixed in the axis of revolution of the lathe, and is illuminated by a lamp. This cross wire is observed by an eye-piece (with cross wires only in the case of a convex lens, or a telescope similarly furnished in the case of a concave lens), also placed in the axis of rotation of the lathe.

Both cross wires are thus in the axis of revolution of the mandrel, and the distant one (B in the figure) is viewed through the lens and referred to the fixed cross wires at A. In general, as the lathe is rotated by turning the mandrel the image of the illuminated cross wires will be observed to rotate also. The lens is adjusted until the image remains steady on rotating the mandrel and it is to give time for this operation that a slow-setting cement is recommended. When the image remains stationary we know that the optical centre of the lens is in the axis of revolution, and that this axis is normal to both lens surfaces, i.e. is the principal axis of the lens, or axis of figure.

Fig. 54.

A much readier method, and one, in general, good enough for most purposes, is to put a candle on the end of the lathe-bed where the back centre generally is, and observe the images of the flame by reflection from both the lens surfaces. This method is very handy with small lenses; the mandrel is turned, and the lens adjusted by hand till the images are immovable. In both cases, of course, the edge of the lens is turned or ground till it is truly circular, the position of the lens remaining undisturbed on the chuck. If the edge gauge has been properly used in the earlier stages of figuring, it will be found that very little turning or grinding is requisite to produce a true centering.