A slate back is prepared of the same radius of curvature as it is desired to impart to the mirrors. Bits of thin sheet glass are then ground circular as described in the last section and cemented to this surface by the smallest quantity of clean archangel pitch, allowed to cool slowly and even to rest for a day before the work is proceeded with. The whole surface is then ground and polished as before.

The mirrors are now reversed, when they ought to nearly fit the tool (assuming that flats are being made, and the fellow tool in all other cases), and are recemented by pitch to the appropriate backing ground, and polished. If very excellent results are required, these processes may be preceded by a preliminary rough grinding of one surface, so that the little discs will "sit" exactly on the tool surface, and not run the risk of being strained by capillary forces in the pitch. We have always found this necessary for really good results.

On removing such mirrors from the backing, they generally, more or less lose their figure, becoming (in general fairly uniformly) more concave or convex. About 5 per cent of the mirrors thus prepared will be found almost perfect if the work has been well done, and the rest will probably be very fair, unless the diameter is very large as compared with the thickness. The best way of grinding and polishing such large surfaces (nests 10 inches in diameter) is on a grinding machine, such as will be described below. The polishing is best done by means of paper, as before described.

Having occasion to require hitherto unapproached lightness and optical accuracy in such mirrors, I got my assistant to try making them of fused quartz, slices being cut by a diamond wheel from a rod of that material. Chips of natural quartz were also obtained from broken "pebble" spectacles, and these were worked at the same time. The resulting mirrors were certainly superior to the best we could make from glass, but the labour of grinding was greater, and the labour of polishing less, than in the latter case. The pebble fragments gave practically as good mirrors as the fused slices. For the future it will be better always to make galvanometer mirrors from quartz crystals. These may be easily sliced, as will be described in § 74. The slices are dressed on a grindstone according to instructions already given for small lenses.

The silvering of these mirrors is a point of great importance. After trying nearly every formula published, we have settled down to the following.

A solution of pure crystallised nitrate of silver in distilled water is made up to a strength of 125 grams of the salt per litre. This forms the stock solution and is kept in a dark bottle.

Let the volume of silvering liquor required in any operation be denoted by 4 v. The liquor is prepared as follows:

I. Measure out a volume v of the stock solution of silver nitrate, and calculate the weight of salt which it contains; let this be w. In another vessel dissolve pure Rochelle salt to the amount of 2.6 w, and make up the solution to the volume v. These two solutions are to be mixed together at a temperature of 55° C., the vessels with their contents being heated to this temperature on the water bath. After mixing the liquids the temperature is to be kept approximately constant for five minutes, after which the liquor may be cooled. The white precipitate which first forms will become gray or black and very dense as the liquid cools. If it does not, the liquor must be reheated to 55° C., and kept at that temperature for a few minutes and then again allowed to cool. The solution is in good order when all the precipitate is dense and gray or black and the liquor clear. The blacker and denser the precipitate the better is the solution. The liquor is decanted and filtered from the precipitate and brought up to the volume 2 v by addition of some of the wash water.

II. Measure out a volume 0.118 v of the stock solution into a separate vessel, and add to it a 5 per cent solution of ammonium hydrate, with proper precautions, so that the precipitate at first formed is all but redissolved after vigorous shaking. It is very important that this condition should be exactly attained. Therefore add the latter part of the ammonia very carefully. Make up the volume to 2 v.

Mix the solutions I. and II. in a separate vessel and pour the mixture into the depositing vessel. The surface to be silvered should face downwards, and lie just beneath the free surface of the liquid. Bubbles must of course be removed.