A. The adjusting screws of the cell mounting the object glass may be worked until the best result is attained; this requires great care and patience. Any errors left over are to be attributed to other causes than the want of collinearity of the axes of object glass and eyepiece.
B. Astigmatism is detected by rotating the object glass or object glass cell. If the oval fringes still persist and the longer axis follows the lens, astigmatism may be inferred. Similarly, by rotating one lens on the other, astigmatism, or want of centering (quite a different thing) may be localised to the lens.
C. The presence of flexure may be confirmed by altering the position of the points of support with respect to the eyepiece, the lens maintaining its original position. The addition of more points of support will in general reduce the ill effects. How to get rid of them I do not know; they are only serious with large lenses.
D. Spherical aberration may be located by using stops and zonal screens, and observing the effect on the image. Sir H. Grubb determines whether any point on the lens requires to be raised or lowered, by touching the glass at that point with a warm hand or cooling it by ether. The effects so produced are the differential results of the change of figure and of refractive index. By observing the effect of the heating or cooling of any part, the operator will know whether to raise or lower that part, provided that by a suitable preliminary experiment he has determined the relation between the effect produced by the change of figure, and that due to the temperature variation of the refractive index. In general it is sufficient to consider the change of shape only and neglect the change in refractive power.
E. Marked astigmatism has never been noticed by me, but I should think that the whole lens surface would require to be repolished or perhaps reground in this case.
F. To decide in which surface faults exist is not easy. By placing a film of oil between the two surfaces nearly in contact these may be easily examined. Thus a mixture of nut and almond oil of the right proportion, to be found by trial, for the temperature, will have the same refractive index as the crown glass, and will consequently reduce any errors of figure in the interior crown surface, if properly applied between the surfaces. Similarly the interior of the flint surface may have its imperfections greatly reduced in effect by using almond oil alone, or mixed with bisulphide of carbon. The outer surfaces, I presume, must be examined by warming or cooling over suitable areas or zones.
The defects being detected, a matter requiring a great deal of skill and experience according to Sir H. Grubb, the next step is to remedy them; and the remedial measures as applied to the glass constitute the process of figuring. There are two ways of correcting local defects, one by means of small paper or pitch covered tools, which according to Sir H. Grubb is dangerous, and according to the experience of Mr. Cook, and I think of many French opticians, safe and advantageous.
Pitch polishing tools are generally used for figuring. They are made by covering a slate backing with squares of pitch. The backing is floated with pitch say one-eighth of an inch thick. This is then scored into squares by a hot iron rod. The tool, while slightly warm, is laid upon the lens surface, previously slightly smeared with dilute glycerine, until the pitch takes the figure of the glass. The polishing material is rouge and water. Small tools are applied locally, and probably can only be so applied with advantage for grave defects.
The other method is longer and probably safer. It consists in furnishing the polishing tool with squares of pitch as before. These being slightly warm, the lens is placed upon them so that they will flow to the exact figure also as before. I presume that the lens is to be slightly smeared with glycerine, or some equivalent, to keep the pitch from sticking. The squares are most thickly distributed where the abrasion is most required, i.e. less pitch is melted out by the iron rod. This may be supplemented by taking advantage of differences of hardness of pitch, making some squares out of harder, others out of softer pitch. The aim is to produce a polishing tool which will polish unequally so as to remove the glass chiefly from predetermined parts of the lens surface. The tool is worked over the surface of the lens by the polishing machine, and part of the art consists in adjusting the strokes to assist in the production of the local variations required.
A source of difficulty and danger lies in the fact that the pitch squares are rarely of the same hardness, so that some abrade the glass more rapidly than others. This is particularly likely to occur if the pitch has been overheated. [Footnote: When pitch is heated till it evolves bubbles of gas its hardness increases with the duration of the process.] The reader must be good enough to regard these remarks as of the barest possible kind, and not intended to convey more than a general idea of the nature of the process of figuring.