Had Rumford been able to eliminate all losses of heat by evaporation, radiation, and conduction, to which losses he refers, and to measure the power exerted with accuracy, the approximation would have been still closer. Rumford thus made the experimental discovery of the real nature of heat, proving it to be a form of energy, and, publishing the fact a half-century before the now standard determinations were made, gave us a very close approximation to the value of the heat-equivalent. Rumford also observed that the heat generated was “exactly proportional to the force with which the two surfaces are pressed together, and to the rapidity of the friction,” which is a simple statement of equivalence between the quantity of work done, or energy expended, and the quantity of heat produced. This was the first great step toward the formation of a Science of Thermo-dynamics. Rumford’s work was the corner-stone of the science.
Sir Humphry Davy, a little later (1799), published the details of an experiment which conclusively confirmed these deductions from Rumford’s work. He rubbed two pieces of ice together, and found that they were melted by the friction so produced. He thereupon concluded: “It is evident that ice by friction is converted into water.... Friction, consequently, does not diminish the capacity of bodies for heat.”
Bacon and Newton, and Hooke and Boyle, seem to have anticipated—long before Rumford’s time—all later philosophers, in admitting the probable correctness of that modern dynamical, or vibratory, theory of heat which considers it a mode of motion; but Davy, in 1812, for the first time, stated plainly and precisely the real nature of heat, saying: “The immediate cause of the phenomenon of heat, then, is motion, and the laws of its communication are precisely the same as the laws of the communication of motion.” The basis of this opinion was the same that had previously been noted by Rumford.
So much having been determined, it became at once evident that the determination of the exact value of the mechanical equivalent of heat was simply a matter of experiment; and during the succeeding generation this determination was made, with greater or less exactness, by several distinguished men. It was also equally evident that the laws governing the new science of thermo-dynamics could be mathematically expressed.
Fourier had, before the date last given, applied mathematical analysis in the solution of problems relating to the transfer of heat without transformation, and his “Théorie de la Chaleur” contained an exceedingly beautiful treatment of the subject. Sadi Carnot, twelve years later (1824), published his “Réflexions sur la Puissance Motrice du Feu,” in which he made a first attempt to express the principles involved in the application of heat to the production of mechanical effect. Starting with the axiom that a body which, having passed through a series of conditions modifying its temperature, is returned to “its primitive physical state as to density, temperature, and molecular constitution,” must contain the same quantity of heat which it had contained originally, he shows that the efficiency of heat-engines is to be determined by carrying the working fluid through a complete cycle, beginning and ending with the same set of conditions. Carnot had not then accepted the vibratory theory of heat, and consequently was led into some errors; but, as will be seen hereafter, the idea just expressed is one of the most important details of a theory of the steam-engine.
Seguin, who has already been mentioned as one of the first to use the fire-tubular boiler for locomotive engines, published in 1839 a work, “Sur l’Influence des Chemins de Fer,” in which he gave the requisite data for a rough determination of the value of the mechanical equivalent of heat, although he does not himself deduce that value.
Dr. Julius R. Mayer, three years later (1842), published the results of a very ingenious and quite closely approximate calculation of the heat-equivalent, basing his estimate upon the work necessary to compress air, and on the specific heats of the gas, the idea being that the work of compression is the equivalent of the heat generated. Seguin had taken the converse operation, taking the loss of heat of expanding steam as the equivalent of the work done by the steam while expanding. The latter also was the first to point out the fact, afterward experimentally proved by Hirn, that the fluid exhausted from an engine should heat the water of condensation less than would the same fluid when originally taken into the engine.
A Danish engineer, Colding, at about the same time (1843), published the results of experiments made to determine the same quantity; but the best and most extended work, and that which is now almost universally accepted as standard, was done by a British investigator.