The evolutionary trend toward an ontogenetically earlier U-pattern in the first two molars in the primitive lineage of the Geomyinae suggests that the U-pattern characteristic of the Entoptychinae was simply an earlier tendency toward the same specialization that occurred later in the subfamily Geomyinae. If so, early entoptychines would have been characterized by an H-pattern in the first stages of attrition, like Dikkomys, and later developed union at the edge of the protomeres. However, in the entoptychines, all the molariform dentition, and not merely the first and second molar, became specialized; consequently the U-pattern was produced on the occlusal surfaces of each of the cheek teeth. As in Pliosaccomys, the transitional phase, in which the two columns were united at their mid-points, was eventually eliminated from the pattern of wear and only the U-pattern, that now appeared in the initial stages of wear, was retained. In the entoptychines of the early Miocene there is no suggestion of the H-pattern that characterizes the Geomyinae, except in the position of the cusps before wear in the lower molars of Pleurolicus sulcifrons, which, according to Wood (1936:6), suggests the H-pattern. In earlier unknown Oligocene stages of evolution, the prisms possibly united first at their mid-points, and the columns may have joined at the side of the tooth only in the terminal stages of wear. The U-pattern of pre-Miocene entoptychines, therefore, may have become the dominant occlusal pattern only in the later stages of phyletic development.

According to the recently expressed views of several paleontologists, the Entoptychinae constitute the primitive lineage of the family and the early Geomyinae constitute a specialized offshoot of the entoptychine ancestral assemblage. The structure of the Entoptychinae, especially of the less advanced genera, closely approximates that of the hypothetical primitive morphotype. But, according to my view, the subfamily Geomyinae constitutes the ancestral assemblage and its structure is essentially that of the primitive morphotype of the family. At any rate the structure of the early geomyines more closely approximates the structure of the ancestral stock than the more divergent entoptychines. Therefore, the genus Dikkomys of the early Miocene, the first known geomyine, is considered to be a generalized geomyid, and, although it is a contemporary of the more specialized entoptychid assemblage, is considered to be more closely allied to the ancestral stock.

The entoptychines were the dominant and most highly differentiated geomyids of the early and middle Miocene. Nevertheless, they became extinct in the middle Miocene, and the geomyines of that time survived and later gave rise to the modern pocket gophers. Therefore, the early history of the family Geomyidae is characterized by an early radiation and trend toward specialization, followed by survival of the less specialized Geomyinae and extinction of the more specialized Entoptychinae.

Entoptychid Radiation

The most abundant geomyids of the early and middle Miocene, the Entoptychinae, consisted of at least 24 species (see Wood, 1936:4-25) classified in four genera: Pleurolicus, Gregorymys, Grangerimus, and Entoptychus. The genera were essentially contemporaneous (see [Figure 3]). Even so, the subfamily was morphologically varied, pointing to an earlier origin in the Oligocene (actually a part of the John Day Fauna, including Pleurolicus may be correlated with late Oligocene Whitneyian age) followed by a relatively rapid radiation including all four genera in the early Miocene. Two genera, Pleurolicus and Gregorymys, continued into the Middle Miocene (Hemingfordian). This divergence, specialization, and subsequent radiation suggest that the entoptychines evolved into a new major adaptive zone, in the sense described by Simpson (1945:199-206).

The radiation is correlated geographically and temporally with the southward retreat of the Neotropical flora of the Tertiary from the western United States and southward movement of the Arctic flora of the Tertiary (see Axlerod, 1950; Berry, 1937:31-46; Chaney, 1947:139-148; and Kendeigh, 1961:280-283). In the early Tertiary the Neotropical-tertiary geoflora occurred northward to at least 49° latitude in western North America, and the boreal Arctic-tertiary flora was restricted to a circumpolar zone. The southward and eastward shift of the Neotropical-tertiary flora, associated with the drying and chilling of the continent, began in the middle or late Oligocene and was concurrent with the divergence and radiation of the Entoptychinae. Beginning in late Oligocene and continuing at least into middle Miocene, most of the region in which the entoptychines occurred was occupied by the Arcto-tertiary geoflora of which the temperate forest division contributed the dominate plant associations. The maples, chestnuts, dogwoods, beeches, walnuts, oaks, elms, birches, and sycamores of that flora were the forerunners of today's eastern deciduous forest. It is my view that the entoptychines became adapted to the conditions of this paleoecological environment and radiated rapidly in the Arikareean when the major change occurred in climax vegetation. The ancestral stock of the Geomyinae was not so successful in the Arcto-tertiary climax, and most of it probably was displaced southward along with the tropical flora.

The skeleton in the entoptychines is not so strongly fossorial as in the modern geomyids (Wilson, 1949:117), and these early geomyids probably were semi-fossorial with somewhat the same burrowing habits as those of the living mountain beaver (Aplodontia). Inasmuch as the morphology and taxonomy of the entoptychines were discussed in detail by Cope (1884) and reviewed later by Wood (loc. cit.), there is no need to recount the details here. According to Wood (op. cit., 27-28), Pleurolicus occupied a central position in the entoptychid radiation and perhaps appeared slightly earlier than the other genera. Wilson (1949) suggested that the lower part of the John Day may actually be Upper Oligocene rather than Lower Miocene, and this arrangement is followed here. Also, Pleurolicus is less specialized than the other genera and occurs in deposits of both the Great Plains and the Pacific Coast. Gregorymys, also little specialized, occurred only on the Great Plains. The more specialized genera, Grangerimus and Entoptycus, evidently appeared somewhat later than Pleurolicus and evolved from it. Except for a record from southern Texas reported recently by Hibbard and Wilson (1950:621-623) and the new species described by MacDonald (1963:182) from the Sharps Formation of South Dakota (early Arikareean), Grangerimus is known only from the Pacific coast. Entoptycus was restricted to the Pacific Coast (John Day fauna).

Entoptycus is the most specialized of the known genera; it has pronounced fossorial adaptations, especially in the skull. Its molariform teeth are rootless and ever-growing as in the modern geomyines. Moreover, the continuous enamel bands on only moderately worn teeth become separated in the final stages of wear into anterior and posterior enamel plates by tracts of dentine that extend toward the crown on the sides of each tooth. This extension was made possible by the union of the two columns at both the lingual and labial margins of the tooth forming an O-pattern, and the crown is essentially monoprismatic save for the isolated enamel fossette in the center of the tooth. The fossette is all that remains of the lateral re-entrant fold that characterized the preceding U-pattern of the earlier stages of wear. Late in the sequence of wear, the anterior enamel plate is lost in the lower molars and the posterior plate in the upper molars. The U-pattern characterizes the final stages of attrition in the other genera of the Entoptychinae; none developed the dental specializations seen in Entoptycus. Rootless, ever-growing cheek teeth, discontinuous enamel patterns, and monoprismatic molars were not evolved in the subfamily Geomyinae until the late Pliocene.

Phyletic Trends in Subfamily Geomyinae

The subfamily Geomyinae is made up of three groups, recognized taxonomically for the first time in this account as tribes—Dikkomyini, Thomomyini, and Geomyini (for full discussion of classification, see previous account). The phylogeny proposed by me is illustrated in [Figure 3]. The tribe Dikkomyini is characterized by generalized and primitive features that together form the basic structural foundation of the subfamily. Evolution within the Dikkomyini resulted in the acquisition and perfection of fossorial adaptations. The Thomomyini and Geomyini are considerably more specialized than the ancestral Dikkomyini from which they evolved. The Geomyini are clearly more specialized than the Thomomyini, suggesting closer affinity between the Thomomyini and the Dikkomyini than between the Geomyini and the Dikkomyini. The specializations in the dentition and the associated changes in the skull of the Thomomyini and Geomyini permit more efficient mastication of fibrous vegetation. Along with these specializations, fossorial adaptations inherited from the Dikkomyini are retained without noteworthy modification.