Judging from the pre-final stages of wear, the dentition of the Geomyini provides a curious combination of patterns that resemble in part the Miocene genus Dikkomys and in part the early and middle Pliocene genus Pliosaccomys. There is no significant variation in the premolars or third molars (at least in the lower teeth) of the Geomyinae from the early Miocene to late Pliocene; therefore, deviations of major significance are in the character of the first and second molars. In the Geomyini, the patterns of wear of m1 and m2 are the same as those of Dikkomys, and are distinctly different from those of Pliosaccomys where the two columns first unite at the edge of their protomeres to form a U-pattern, rather than at their mid-points to form an H-pattern. Even though the intermediate stages of ontogeny in m1 and m2 of Pliosaccomys and the Geomyini are entirely different, the bicolumnar crowns of both eventually unite, upon wear, into a single column. On the other hand, the patterns of M1 and M2 in the Geomyini most closely resemble those of Pliosaccomys, rather than Dikkomys. In this regard it should be pointed out that the upper molars of Dikkomys are presently represented by only one tooth, an M1 in an early stage of wear. As described already, the patterns of M1-2 evidently would be mirror images of m1-2 in corresponding stages of wear. However, the initial union of the two columns, in the M1 that is known, is somewhat to the lingual side of center and the relatively small lingual valley does not reach the base of the crown, indicating, that eventually with wear, the two columns of Dikkomys might have become united across the entire surface of their protomeres as in Pliosaccomys. Even so, the two columns of M1 do initially join closer to their mid-points than they do in Pliosaccomys, and, if they did actually unite across their protomeres, the union would have occurred with subsequent wear. That is, the first occlusal pattern would be H-shaped (but with the connection closer to the lingual than the labial side), as in m1 and m2, and it would become U-shaped only after additional wear. This sequence of patterns of M1 and M2, as already pointed out, does not pertain in Pliosaccomys or the Geomyini, since the U-pattern is formed with the first union of the two columns at the edge of their protomeres, and the primitive H-pattern is never developed, unless one counts the slight lingual inflection, that occasionally is formed just after the two columns unite, as being indicative of the primitive pattern. As in the lower teeth, the bicolumnar crowns of early ontogeny in both Pliosaccomys and the Geomyini become eventually united, with wear, into a single column.
Based upon the foregoing evidence, it would seem likely that the Geomyini evolved from an early Pliocene (perhaps late Miocene) Dikkomyini ancestor that had evolved the specializations of M1 and M2 that characterize its relative, Pliosaccomys, but had not also evolved the specializations of m1 and m2 that distinguish Pliosaccomys. Therefore, the ancestor of the Geomyini differed from the Pliosaccomys-Thomomyini lineage in its retention, unmodified, of the primitive patterns in m1 and m2 that characterized the earliest known Geomyines (Dikkomys). The same patterns are preserved in m1 and m2 of its modern descendents, the living Geomyini. In the Pliosaccomys-Thomomyini lineage the pattern of m1 and m2 are entirely different, as described above.
The earliest record of the Geomyini is the extinct genus Pliogeomys (see [Fig. 6]) in the latest Hemphillian (middle Pliocene) and earliest Blancan (late Pliocene). Pliogeomys is more primitive than any modern genus of the Geomyini, seems to have been a late survivor of the primitive stock, but was itself probably a collateral lineage and not on the direct line of descent. The cheek teeth in Pliogeomys are rooted and less hypsodont than in the late Pliocene examples of the modern genera, and the anterior enamel plate of the lower molars shows no indication of reduction, as would be expected if Pliogeomys were in the direct line of evolution. Separation of Pliogeomys from the main stem of the Geomyini probably occurred after several specializations had already been achieved by the Geomyini. Two inheritances might have been grooving on the upper incisors and some reduction in amount of enamel on the sides of the cheek teeth. The dentine tracts on the sides of the cheek teeth of Pliogeomys are narrow (see [Fig. 7A]) and barely separate the enamel blades and there is no discernible reduction in the anterior enamel blades on its lower molars. Those blades evidently were lost in the main lineage before the Pleistocene radiation of the living genera took place. Pliogeomys is in an intermediate stage in evolution, and was not so advanced as was the main lineage at the time Pliogeomys died out. Its structure does provide clues as to phyletic development that took place in the main lineage.
Specialized trends in the early phylogeny of the Geomyini included: development of rootless, ever-growing cheek teeth and an increase in hypsodonty; loss of the bicolumnar structure of the first and second molars, and, consequently, the formation of a single elliptical column in the final stage of wear; interruption of the enamel investment of the molariform teeth and formation of anterior and posterior enamel plates; and enlargement of the masseteric ridge and fossa. Each of these trends occurred independently in the Thomomyini, and each is an example of parallelism in the phyletic evolution of the two lineages. Three additional specializations lacking in the Thomomyini are the grooving on upper incisors, loss of anterior enamel plate in lower molars, and development of a basitemporal fossa on the mandible. Evidently, two grooves evolved in the ancestral incisors in the same bisculcate pattern preserved in Pliogeomys, Zygogeomys and Geomys. The innermost groove is weakly developed in Pliogeomys, suggesting that this character was in an intermediate stage of evolution in the ancestral lineage at the time that Pliogeomys split off. Numerous other specializations in the Geomyini appeared later, but evolved in the different genera that diverged from the ancestral lineage and are discussed separately in the next account. Only two of the major features characterizing the Dikkomyini are retained in the Geomyini: the H-pattern on the occlusal surface of the m1 and m2 developed during the initial stages of wear, and the bicolumnar pattern of M3. Adaptive radiation produced the living genera of the Geomyini in the late Pliocene and early Pleistocene (see Fig. 6) and subsequent specialization of the ancestral morphology followed.
Parallelism in the molars of later geomyines and the Entoptychinae is illustrated by the lateral interruption of the enamel investment and loss of enamel plates and by the omission of the H-pattern stage in the first and second molars (in Pliosaccomys). Resemblance of dentitions in certain stages of wear in Pliosaccomys and in entoptychines led some investigators, for instance, Hibbard (1953:357), to suggest that Pliosaccomys descended from one of the less specialized entoptychines, possibly Grangerimus but probably Gregorymys. Actually, the highly specialized upper and lower premolars and third molars of the entoptychines rule them out as ancestors of the later geomyines. The evolution of entoptychine-like features in Pliosaccomys is regarded as an example of iteration, a pattern of parallelism (see Simpson, 1953:248-253) where an allochronic and independent lineage undergoes the same evolutionary trend that phyletically characterized an earlier lineage, usually after the latter has become extinct. In this case, the lineage giving rise to Pliosaccomys passed through the same phyletic stages in its evolution in the early Pliocene (and possibly the late Miocene) as did the entoptychines in the late Oligocene and early Miocene.
Another parallelism by iteration, occurring in the middle and late Pliocene in both the Thomomyini and Geomyini, is the loss of enamel from the lateral surfaces of the cheek teeth, and, in the Geomyini only, the eventual loss of the anterior plate in the lower teeth and the posterior plate in the upper teeth. Both features were evolved more than an epoch earlier in the specialized entoptychid genus Entoptychus of the lower Miocene. In Entoptychus, only the posterior plate of the lower molars and the anterior plate of the upper molars remained in the final stages of attrition, although a central enamel fossette, a remnant of the re-entrant fold, remained throughout life. Iteration is also expressed in the subfamily Geomyinae by the development of grooving on the upper incisor and the formation of the basitemporal fossa. A shallow but distinct basitemporal fossa occurs between the coronoid process and the third lower molar in the genus Entoptychus and a sulcated upper incisor, a single shallow groove usually near the median border of the tooth, is found in the genus Gregorymys of the subfamily Entoptychinae. Both features are regarded as advanced specializations in the tribe Geomyini, even though each was evolved in the entoptychines of the Lower Miocene.
The postcranial skeleton of living genera of pocket gophers, as befits animals that spend most of their life within underground burrows, are highly specialized for a fossorial life. Elements of the postcranial skeleton recovered from Lower Miocene deposits indicate that the entoptychines were only semi-fossorial (see Cope, 1884:857; Wood, 1936:4-5; Wilson, 1949:117-118). One of the basic trends of the entoptychines was towards greater fossorial adaptation; the skeleton of Entoptychus shows a greater degree of fossorial adaptation than earlier genera of the subfamily. There is no reason to suppose that the geomyine genus Dikkomys, which lived at the same times as the entoptychines, had acquired any more advanced fossorial adaptations than had the entoptychines.
The most pronounced fossorial adaptations seem to have evolved only in the ancestral lineage of the modern geomyines, probably in the latter part of the Miocene and in the early Pliocene, before the modern Thomomyini and Geomyini diverged. Extreme fossorial adaptations in herbivorous rodents, such as those characteristic of the modern pocket gophers and their immediate ancestors, are thought to have evolved only in response to pronounced arid conditions. The Entoptychinae and evidently the early geomyines lived in environments that were either tropical or temperate, and under conditions more mesic than I would consider necessary to bring about selection pressure resulting in fossorial specializations. In late Oligocene and early Miocene, according to Axelroad (1958:433-509), arid conditions did not exist in the United States, and the only xerophytic environments in North America occurred on the Central Plateau of México. Moreover (Axelroad, loc. cit.), arid conditions did not develop in the western United States until the early Pliocene. Geomyids evidently became extinct in this region at the close of the Middle Miocene, and none appear in fossil deposits in the western United States until the latest Lower Pliocene (Clarendonian). The reappearance of geomyids, Pliosaccomys, in the western United States coincides with a trend toward aridity and the northward movement of the Madro-tertiary geoflora into the Great Basin and Great Plains from its place of origin on the Central Plateau of México (Axelroad, loc. cit.). Later, in the middle and later Pliocene, the Madro-tertiary geoflora gave rise to the modern xerophytic plants that now characterize the desert vegetation of North America.