Mr. Milne Home expects, as I gather, a threefold result:—1st, an increased and better regulated supply of available water; 2nd, an increased rainfall; and, 3rd, a more equable climate, with more temperate summer heat and winter cold.[46] As to the first of these expectations, I suppose there can be no doubt that it is justified by facts; but it may not be unnecessary to guard against any confusion of the first with the second. Not only does the presence of growing timber increase and regulate the supply of running and spring water independently of any change in the amount of rainfall, but as Boussingault found at Marmato,[47] denudation of forest is sufficient to decrease that supply, even when the rainfall has increased instead of diminished in amount. The second and third effects stand apart, therefore, from any question as to the utility of Mr. Milne Home’s important proposal; they are both, perhaps, worthy of discussion at the present time, but I wish to confine myself in the present paper to the examination of the third alone.

A wood, then, may be regarded either as a superficies or as a solid; that is, either as a part of the earth’s surface slightly elevated above the rest, or as a diffused and heterogeneous body displacing a certain portion of free and mobile atmosphere. It is primarily in the first character that it attracts our attention, as a radiating and absorbing surface, exposed to the sun and the currents of the air; such that, if we imagine a plateau of meadow-land or bare earth raised to the mean level of the forest’s exposed leaf-surface, we shall have an agent entirely similar in kind, although perhaps widely differing in the amount of action. Now, by comparing a tract of wood with such a plateau as we have just supposed, we shall arrive at a clear idea of the specialities of the former. In the first place, then, the mass of foliage may be expected to increase the radiating power of each tree. The upper leaves radiate freely towards the stars and the cold inter-stellar spaces, while the lower ones radiate to those above and receive less heat in return; consequently, during the absence of the sun, each tree cools gradually downward from top to bottom. Hence we must take into account not merely the area of leaf-surface actually exposed to the sky, but, to a greater or less extent, the surface of every leaf in the whole tree or the whole wood. This is evidently a point in which the action of the forest may be expected to differ from that of the meadow or naked earth; for though, of course, inferior strata tend to a certain extent to follow somewhat the same course as the mass of inferior leaves, they do so to a less degree—conduction, and the conduction of a very slow conductor, being substituted for radiation.

We come next, however, to a second point of difference. In the case of the meadow, the chilled air continues to lie upon the surface, the grass, as Humboldt says, remaining all night submerged in the stratum of lowest temperature; while in the case of trees, the coldest air is continually passing down to the space underneath the boughs, or what we may perhaps term the crypt of the forest. Here it is that the consideration of any piece of woodland conceived as a solid comes naturally in; for this solid contains a portion of the atmosphere, partially cut off from the rest, more or less excluded from the influence of wind, and lying upon a soil that is screened all day from isolation by the impending mass of foliage. In this way (and chiefly, I think, from the exclusion of winds), we have underneath the radiating leaf-surface a stratum of comparatively stagnant air, protected from many sudden variations of temperature, and tending only slowly to bring itself into equilibrium with the more general changes that take place in the free atmosphere.

Over and above what has been mentioned, thermal effects have been attributed to the vital activity of the leaves in the transudation of water, and even to the respiration and circulation of living wood. The whole actual amount of thermal influence, however, is so small that I may rest satisfied with mere mention. If these actions have any effect at all, it must be practically insensible; and the others that I have already stated are not only sufficient validly to account for all the observed differences, but would lead naturally to the expectation of differences very much larger and better marked. To these observations I proceed at once. Experience has been acquired upon the following three points:—1, The relation between the temperature of the trunk of a tree and the temperature of the surrounding atmosphere; 2, The relation between the temperature of the air under a wood and the temperature of the air outside; and, 3, The relation between the temperature of the air above a wood and the temperature of the air above cleared land.

As to the first question, there are several independent series of observations; and I may remark in passing, what applies to all, that allowance must be made throughout for some factor of specific heat. The results were as follows:—The seasonal and monthly means in the tree and in the air were not sensibly different. The variations in the tree, in M. Becquerel’s own observations, appear as considerably less than a fourth of those in the atmosphere, and he has calculated, from observations made at Geneva between 1796 and 1798, that the variations in the tree were less than a fifth of those in the air; but the tree in this case, besides being of a different species, was seven or eight inches thicker than the one experimented on by himself.[48] The variations in the tree, therefore, are always less than those in the air, the ratio between the two depending apparently on the thickness of the tree in question and the rapidity with which the variations followed upon one another. The times of the maxima, moreover, were widely different: in the air, the maximum occurs at 2 P.M. in winter, and at 3 P.M. in summer; in the tree, it occurs in winter at 6 P.M., and in summer between 10 and 11 P.M. At nine in the morning in the month of June, the temperatures of the tree and of the air had come to an equilibrium. A similar difference of progression is visible in the means, which differ most in spring and autumn, and tend to equalise themselves in winter and in summer. But it appears most strikingly in the case of variations somewhat longer in period than the daily ranges. The following temperatures occurred during M. Becquerel’s observations in the Jardin des Plantes:—

Date.Temperature of
the Air.
Temperature in
the Tree.
1859. Dec. 15, ” 16, ” 17, ” 18, ” 19, ” 20, ” 21, ” 22, ” 23, 26.78° 19.76° 17.78° 13.28° 12.02° 12.54° 38.30° 43.34° 44.06° 32.00° 32.00° 31.46° 30.56° 28.40° 25.34° 27.86° 30.92° 31.46°

A moment’s comparison of the two columns will make the principle apparent. The temperature of the air falls nearly fifteen degrees in five days; the temperature of the tree, sluggishly following, falls in the same time less than four degrees. Between the 19th and the 20th the temperature of the air has changed its direction of motion, and risen nearly a degree; but the temperature of the tree persists in its former course, and continues to fall nearly three degrees farther. On the 21st there comes a sudden increase of heat, a sudden thaw; the temperature of the air rises twenty-five and a half degrees; the change at last reaches the tree, but only raises its temperature by less than three degrees; and even two days afterwards, when the air is already twelve degrees above freezing point, the tree is still half a degree below it. Take, again, the following case:—

Date.Temperature of
the Air.
Temperature in
the Tree.
1859. July 13, ” 14, ” 15, ” 16, ” 17, ” 18, ” 19, 84.92° 82.58° 80.42° 79.88° 73.22° 68.54 65.66° 76.28° 78.62° 77.72° 78.44° 75.92° 74.30° 70.70°

The same order reappears. From the 13th to the 19th the temperature of the air steadily falls, while the temperature of the tree continues apparently to follow the course of previous variations, and does not really begin to fall, is not really affected by the ebb of heat, until the 17th, three days at least after it had been operating in the air.[49] Hence we may conclude that all variations of the temperature of the air, whatever be their period, from twenty-four hours up to twelve months, are followed in the same manner by variations in the temperature of the tree; and that those in the tree are always less in amount and considerably slower of occurrence than those in the air. This thermal sluggishness, so to speak, seems capable of explaining all the phenomena of the case without any hypothetical vital power of resisting temperatures below the freezing point, such as is hinted at even by Becquerel.

Réaumur, indeed, is said to have observed temperatures in slender trees nearly thirty degrees higher than the temperature of the air in the sun; but we are not informed as to the conditions under which this observation was made, and it is therefore impossible to assign to it its proper value. The sap of the ice-plant is said to be materially colder than the surrounding atmosphere; and there are several other somewhat incongruous facts, which tend, at first sight, to favour the view of some inherent power of resistance in some plants to high temperatures, and in others to low temperatures.[50] But such a supposition seems in the meantime to be gratuitous. Keeping in view the thermal redispositions, which must be greatly favoured by the ascent of the sap, and the difference between the condition as to temperature of such parts as the root, the heart of the trunk, and the extreme foliage, and never forgetting the unknown factor of specific heat, we may still regard it as possible to account for all anomalies without the aid of any such hypothesis. We may, therefore, I think, disregard small exceptions, and state the result as follows:—