536. The machine for driving piles consists essentially of a heavy mass of iron, which is raised to a height, and allowed to fall upon the pile. The resistance to be overcome depends upon the depth and nature of the soil: a pile may be driven two or three inches with each blow, but the less the distance the pile enters each time, the greater is the actual pressure with which the blow forces it downwards. In the ordinary hammer, the power of the arm imparts velocity to the hammer-head, in addition to that which is due to the fall; the effect produced is merely the same as if the hammer had fallen from a greater height.

537. Another point may be mentioned here. A nail will only enter a piece of wood when the nail and the wood are pressed together with sufficient force. The nail is urged by the hammer. If the wood be lying on the ground, the reaction of the ground prevents the wood from getting away and the nail will enter. In other cases the element of time is all-important. If the wood be massive less force will make the nail penetrate than would suffice to move the wood quickly enough. If the wood be thin and unsupported, less force may be required to make it yield than to make the nail penetrate. The usual remedy is obvious. Hold a heavy mass close at the back of the wood. The nail will then enter because the augmented mass cannot now escape as rapidly as before.

THE STORING OF ENERGY.

538. Our study of the subject will be facilitated by some considerations founded on the principles of energy. In the experiment of [Fig. 71] let a be 14 lbs., and b, on the ground, be 56 lbs. Since the rope is 15' long, a is 3' from the ground, and therefore 6' from the pulley. I raise a to the pulley, and, in doing so, expend 6 × 14 = 84 units of energy. Energy is never lost, and therefore I shall expect to recover this amount. I allow a to fall; when it has fallen 6', it is then precisely in the same condition as it was before being raised, except that it has a considerable velocity of descent. In fact, the 84 units of energy have been expended in giving velocity to a. b is then lifted to a maximum height x, in which 56 × x units of energy have been consumed. At the instant when b is at the summit x, a must be at a distance of 6 + x feet from the pulley; hence the quantity of work performed by a is 14 × (6 + x). But the work done by a must be equal to that done upon b, and therefore

14(6 + x) = 56 x,

whence x = 2. If there were no loss by friction, b would therefore be raised 2'; but owing to friction, and doubtless also to the imperfect flexibility of the rope, the effect is not so great. We may regard the work done in raising a as so much energy stored up, and when a is allowed to fall, the energy is reproduced in a modified form.

539. Let us apply the principle of energy to the pile-driving engine to which we have referred ([Art. 536]); we shall then be able to find the magnitude of the force developed in producing the blow. Suppose the “monkey,” that is the heavy hammer-head, weighs 560 lbs. (a quarter of a ton). A couple of men raise this by means of a small winch to a height of 15'. It takes them a few minutes to do so; their energy is then saved up, and they have accumulated a store of 560 × 15 = 8,400 units. When the monkey falls upon the top of the pile it transfers thereto nearly the whole of the 8,400 units of energy, and this is expended in forcing the pile into the ground. Suppose the pile to enter one inch, the reaction of the pile upon the monkey must be so great that the number of units of energy consumed in one inch is 8,400. Hence this reaction must be 8,400 × 12 = 100,800 lbs. If the reaction did not reach this amount, the monkey could not be brought to rest in so short a distance. The reaction of the pile upon the monkey, and therefore the action of the monkey upon the pile, is about 45 tons. This is the actual pressure exerted.

540. If the soil which the pile is penetrating be more resisting than that which we have supposed,—for example, if the pile require a direct pressure of 100 tons to force it in,—the same monkey with the same fall would still be sufficient, but the pile would not be driven so far with each blow. The pressure required is 224,000 lbs.: this exerted over a space of 0"·45 would be 8,400 units of energy; hence the pile would be driven 0"·45. The more the resistance, the less the penetration produced by each blow. A pile intended to bear a very heavy load permanently must be driven until it enters but little with each blow.

541. We may compare the pile-driver with the mechanical powers in one respect, and contrast it in another. In each, we have machines which receive energy and restore it modified into a greater power exerted through a smaller distance; but while the mechanical powers restore the energy at one end of the machine, simultaneously with their reception of it at the other, the pile-driver is a reservoir for keeping energy which will restore it in the form wanted.

542. We have, then, a class of mechanical powers, of which a hammer may be taken as the type, which depend upon the storage of energy; the power of the arm is accumulated in the hammer throughout its descent, to be instantly transferred to the nail in the blow. Inertia is the property of matter which qualifies it for this purpose. Energy is developed by the explosion of gunpowder in a cannon. This energy is transferred to the ball, from which it is again in large part passed on to do work against the object which is struck. Here we see energy stored in a rapidly moving body, a case to which we shall presently return.