In [Fig. 12] is shown a chain 8' long, one end of which b is attached to a wire-strainer, while the other end is fastened to a small piece of pine a, which is 0"·5 square in section, and 5" long between the two upright irons by which it is supported. By means of the nut of the wire-strainer I straighten the chain as I did the string of [Fig. 11], and for the same reason. I then put a piece of twine round the chain and pull it gently. The strain brought to bear on the wood is so great that it breaks across. Here, the small force of a few pounds, transmitted to the chain by pulling the siring, is magnified to upwards of a hundredweight, for less than this would not break the wood. The explanation is precisely the same as when the string was broken by the thread.

Fig. 12.

SAILING.

30. The action of the wind upon the sails of a vessel affords a very instructive and useful example of the decomposition of forces. By the parallelogram of forces we are able to explain how it is that a vessel is able even to sail against the wind. A force is that which tends to produce motion, and motion generally takes place in the line of the force. In the case of the action of wind on a vessel through the medium of the sails, we have motion produced which is not necessarily in the direction of the wind, and which may be to a certain extent opposed to it. This apparent paradox requires some elucidation.

Fig. 13.

31. Let us first suppose the wind to be blowing in a direction shown by the arrows of [Fig. 13], perpendicular to the line ab in which the ship’s course lies.

In what direction must the sail be set? It is clear that the sail must not be placed along the line ab, for then the only effect of the wind would be to blow the vessel sideways; nor could the sail be placed with its edge to the wind, that is, along the line o w, for then the wind would merely glide along the sail without producing a propelling force. Let, then, the sail be placed between the two positions, as in the direction p q. The line o w represents the magnitude of the force of the wind pressing on the sail.

We shall suppose for simplicity that the sail extends on both sides of o. Through o draw o r perpendicular to p q, and from w let fall the perpendicular w x on p q, and w r on o r. By the principle of the parallelogram of forces, the force o w may be decomposed into the two forces o x and o r, since these are the sides of the parallelogram of which o w, the force of the wind, is the diagonal. We may then leave o w out of consideration, and imagine the force of the wind to be replaced by the pair of forces o x and o r; but the force o x cannot produce an effect, it merely represents a force which glides along the surface of the sail, not one which pushes against it; so far as this component goes, the sail has its edge towards it, and therefore the force produces no effect. On the other hand, the sail is perpendicular to the force o r, and this is therefore the efficient component.