56. We have thus proved by actual experiment this useful and instructive law of nature; the same result could have been inferred by reasoning from the parallelogram of force, but the purely experimental proof is more in accordance with our scheme. The doctrine of the composition of parallel forces is one of the most fundamental parts of mechanics, and we shall have many occasions to employ it in this as well as in subsequent lectures.
57. Returning now to [Fig. 19], with which we commenced, the law we have discovered will enable us to find how the weight is distributed. We divide the length of the bar between the supports into 14 equal parts because the weight is 14 lbs.; if, then, the weight be at d, 10 divisions from one end a, and 4 from the other b, the pressure at the corresponding ends will be 4 and 10. If the weight were 2·5 divisions from one end, and therefore 11·5 from the other, the shares in which this load would be supported at the ends are 11·5 lbs. and 2·5 lbs. The actual pressure sustained by each end is, however, about 6 ounces greater if the weight of the wooden bar itself be taken into account.
58. Let us suspend a second weight from another point of the bar. We must then calculate the pressures at the ends which each weight separately would produce, and those at the same end are to be added together, and to half the weight of the bar, to find the total pressure. Thus, if one weight of 20 lbs. were in the middle, and another of 14 lbs. at a distance of 11 divisions from one end, the middle weight would produce 10 lbs. at each end and the 14 lbs. would produce 3 lbs. and 11 lbs., and remembering the weight of the bar, the total pressures produced would be 13 lbs. 6 oz. and 21 lbs. 6 oz. The same principles will evidently apply to the case of several weights: and the application of the rule becomes especially easy when all the weights are equal, for then the same divisions will serve for calculating the effect of each weight.
59. The principles involved in these calculations are of so much importance that we shall further examine them by a different method, which has many useful applications.
EQUILIBRIUM OF A BAR SUPPORTED
ON A KNIFE-EDGE.
60. The weight of the bar has hitherto somewhat complicated our calculations; the results would appear more simply if we could avoid this weight; but since we want a strong bar, its weight is not so small that we could afford to overlook it altogether. By means of the arrangement of [Fig. 21], we can counterpoise the weight of the bar. To the centre of A B a cord is attached, which, passing over a fixed pulley D, carries a hook at the other end. The bar, being a pine rod, 4 feet long and 1 inch square, weighs about 12 ounces; consequently, if a weight of twelve ounces be suspended from the hook, the bar will be counterpoised, and will remain at whatever height it is placed.
Fig. 21.
61. a b is divided by lines drawn along it at distances of 1" apart; there are thus 48 of these divisions. The weights employed are furnished with rings large enough to enable them to be slipped on the bar and thus placed in any desired position.
62. Underneath the bar lies an important portion of the arrangement; namely, the knife-edge c. This is a blunt edge of steel firmly fastened to the support which carries it. This support can be moved along underneath the bar so that the knife-edge can be placed under any of the divisions required. The bar being counterpoised, though still unloaded with weights, may be brought down till it just touches the knife-edge; it will then remain horizontal, and will retain this position whether the knife-edge be at either end of the bar or in any intermediate position. I shall hang weights at the extremities of the rod, and we shall find that there is for each pair of weights just one position at which, if the knife-edge be placed, it will sustain the rod horizontally. We shall then examine the relations between these distances and the weights that have been attached, and we shall trace the connection between the results of this method and those of the arrangement that we last used.