250. The lever of the third order may be easily understood from [Fig. 39], of which we have already made use. In the lever of the third order the fulcrum is at one end, the load is at the other end, while the power lies between the two. In this case, then, the power is represented by the 56 lb. weight, while the load is indicated by the spring balance. The power always exceeds the load, and consequently this lever is to be used where speed is to be gained instead of power. Thus, for example; when the power, 56 lbs., is 2' distant from the fulcrum, the load indicated by the spring balance is about 23 lbs.

251. The treadle of a grindstone is often a lever of the third order. The fulcrum is at one end, the load is at the other end, and the foot has only to move through a small distance.

252. The principles which have been discussed in [Lecture III.] with respect to parallel forces explain the laws now laid down for levers of different orders, and will also enable us to express these laws more concisely.

253. A comparison between [Figs. 20] and [39] shows that the only difference between the contrivances is that in [Fig. 20] we have a spring balance c in the same place as the steel edge a in Fig 39. We may in [Fig. 20] regard one spring balance as the power, the other as the fulcrum, and the weight as the load. Nor is there any essential difference between the apparatus of [Fig. 38] and that of [Fig. 20]. In [Fig. 38] the bar is pulled down by a force at each end, one a weight, the other a spring balance, while it is supported by the upward pressure of the steel edge. In [Fig. 20] the bar is being pulled upwards by a force at each end, and downwards by the weight. The two cases are substantially the same. In each of them we find a bar acted upon by a pair of parallel forces applied at its extremities, and retained in equilibrium by a third force.

254. We may therefore apply to the lever the principles of parallel forces already explained. We showed that two parallel forces acting upon a bar could be compounded into a resultant, applied at a certain point of the bar. We have defined the moment of a force ([Art. 64]), and proved that the moments of two parallel forces about the point of application of their resultant are equal.

255. In the lever of the first order there are two parallel forces, one at each end; these are compounded into a resultant, and it is necessary that this resultant be applied exactly over the steel edge or fulcrum in order that the bar may be maintained at rest. In the levers of the second and third orders, the power and the load are two parallel forces acting in opposite directions; their resultant, therefore, does not lie between the forces, but is applied on the side of the greater, and at the point where the steel edge supports the bar. In all cases the moment of one of the forces about the fulcrum must be equal to that of the other. From the equality of moments it follows that the product of the power and the distance of the power from the fulcrum equals the product of the load, and the distance of the load from the fulcrum: this principle suffices to demonstrate the rules already given.

256. The laws governing the lever may be deduced from the principle of work; the load, if nearer than the power to the fulcrum, is moved through a smaller distance than the power. Thus, for example, in the lever of the first order: if the load be 12 times as far as the power from the fulcrum, then for every inch the load moves it can be demonstrated that the power must move 12 inches. The number of units of work applied at one end of a machine is equal to the number yielded at the other, always excepting the loss due to friction, which is, however, so small in the lever that we may neglect it. If then a power of 1 lb. be applied to move the power end through 12 inches, one unit of work will have been put into the machine. Hence one unit of work must be done on the load, but the load only moves through ¹/₁₂ of a foot, and therefore a load of 12 lbs. could be overcome: this is the same result as would be given by the rule ([Art. 236]).

257. To conclude: we have first determined by actual experiment the relation between the power and the load in the lever; we have seen that the law thus obtained harmonizes with the principle of the composition of parallel forces; and, finally, we have shown how the same result can be deduced from the fertile and important principle of work.

LECTURE IX.
THE INCLINED PLANE AND THE SCREW.

The Inclined Plane without Friction.—The Inclined Plane with Friction.—The Screw.—The Screw-jack.—The Bolt and Nut.