295. One of the most useful applications of the screw is met with in the common bolt and nut, shown in [Fig. 45]. It consists of a wrought iron rod with a head at one end and a screw on the other, upon which the nut works. Bolts in many different sizes and forms represent the stitches by which machines and frames are most readily united. There are several reasons why the bolt is so convenient. It draws the parts into close contact with tremendous force; it is itself so strong that the parts united practically form one piece. It can be adjusted quickly, and removed as readily. The same bolt by the use of washers can be applied to pieces of very different sizes. No skilled hand is required to use the simple tool that turns the nut. Adding to this that bolts are cheap and durable, we shall easily understand why they are so extensively used.
296. We must remark in conclusion that the bolt owes its utility to friction; screws of this kind do not overhaul, hence when the nut is screwed home it does not recoil. If it were not that more than half the power applied to a screw is consumed in friction, the bolt and the nut would either be rendered useless, or at least would require to be furnished with some complicated apparatus for preventing the motion of the nut.
LECTURE X.
THE WHEEL AND AXLE.
Introduction.—Experiments upon the Wheel and Axle.—Friction upon the Axle.—The Wheel and Barrel.—The Wheel and Pinion.—The Crane.—Conclusion.
INTRODUCTION.
297. The mechanical powers discussed in these lectures may be grouped into two classes,—the first where ropes or chains are used, and the second where ropes or chains are absent. Belonging to that class in which ropes are not employed, we have the screw discussed in the last lecture; and the lever discussed in [Lecture VIII.]; while among those machines in which ropes or chains form an essential part of the apparatus, the pulley and the wheel and axle hold a prominent place. We have already examined several forms of the pulley, and we now proceed to the not less important subject of the wheel and axle.
298. Where great resistances have to be overcome, but where the distance through which the resistance must be urged is short, the lever or the screw is generally found to be the most appropriate means of increasing power. When, however, the resistance has to be moved a considerable distance, the aid of the pulley, or the wheel and axle, or sometimes of both combined, is called in. The wheel and axle is the form of mechanical power which is generally used when the distance is considerable through which a weight must be raised, or through which some resistance must be overcome.
Fig. 46.
299. The wheel and axle assumes very many forms corresponding to the various purposes to which it is applied. The general form of the arrangement will be understood from [Fig. 46]. It consists of an iron axle b, mounted in bearings, so as to be capable of turning freely; to this axle a rope is fastened, and at the extremity of the rope is a weight d, which is gradually raised as the axle revolves. Attached to the axle, and turning with it, is a wheel a with hooks in its circumference, upon which lies a rope; one end of this rope is attached to the circumference of the wheel, and the other supports a weight e. This latter weight may be called the power, while the weight d suspended from the axle is the load. When the power is sufficiently large, e descends, making the wheel to revolve; the wheel causes the axle to revolve, and thus the rope is wound up and the load d is raised.