346. The uses of timber in the arts are as various as its qualities. Some woods are useful for their beauty, and others for their strength or durability under different circumstances. We shall only employ “pine” in our experimental inquiries. This wood is selected because it is so well known and so much used. A knowledge of the properties of pine would probably be more useful than a knowledge of the properties of any other wood, and at the same time it must be remembered that the laws which we shall establish by means of slips of pine may be generally applied.

347. A transverse section of a tree shows a number of rings, each of which represents the growth of wood in one year. The age of the tree may sometimes be approximately found by counting the number of distinguishable rings. The outer rings are the newer portions of the wood.

348. When a tree is felled it contains a large quantity of sap, which must be allowed to evaporate before the wood is fit for use. With this object the timber is stored in suitable yards for two or more years according to the purposes for which it is intended; sometimes the process of seasoning, as it is called, is hastened by other means. Wood, when seasoning, contracts; hence blocks of timber are often found split from the circumference to the centre, for the outer rings, being newer and containing more sap, contract more than the inner rings. For the same reason a plank is found to warp when the wood is not thoroughly seasoned. The side of the plank which was farthest from the centre of the tree contracts more than the other side, and becomes concave. This can be easily verified by looking at the edge of the plank, for we there see the rings of which it is composed.

349. Timber may be softened by steaming. I have here a rod of pine, 24" × 0"·5 × 0"·5, and here a second rod cut from the same piece and of the same size, which has been exposed to steam of boiling water for more than an hour: securing these at one end to a firm stand, I bend them down together, and you see that after the dry rod has broken the steamed rod can be bent much farther before it gives way. This property of wood is utilized in shaping the timbers of wooden ships. We shall be able to understand the action of steam if we reflect that wood is composed of a number of fibres ranged side by side and united together. A rope is composed of a number of fibres laid together and twisted, but the fibres are not coherent as they are in wood. Hence we find that a rod of wood is stiff, while a rope is flexible. The steam finds its way into the interstices between the fibres of the wood; it softens their connections, and increases the pliability of the fibres themselves, and thus, the operation of steaming tends to soften a piece of timber and render it tractable.

350. The structure of wood is exhibited by the following simple experiment:—Here are two pieces of pine, each 9" × 1" × 1". One of them I easily snap across with a blow, while my blows are unable to break the other. The difference is merely that one of these pieces is cut against the grain, while the other is with it. In the first case I have only to separate the connection between the fibres, which is quite easy. In the other case I would have to tear asunder the fibres themselves, which is vastly more difficult. To a certain extent the grained structure is also found in wrought iron, but the contrast between the strength of iron with the grain and against the grain is not so marked as it is in wood.

RESISTANCE TO EXTENSION.

351. It will be necessary to explain a little more definitely what is meant by the strength of timber. We may conceive a rod to be broken in three different ways. In the first place the rod may be taken by a force at each end and torn asunder by pulling, as a thread may be broken. To do this requires very great power, and the strength of the material with reference to such a mode of destroying it is called its resistance to extension. In the second place, it may be broken by longitudinal pressure at each end, as a pillar may be crushed by the superincumbent weight being too large; the strength that relates to this form of force is called resistance to compression: finally, the rod may be broken by a force applied transversely. The strength of pine with reference to these different applications of force will be considered successively. The rods that are to be used have been cut from the same piece of timber, which has been selected on account of its straightness of grain and freedom from knots. They are of different rectangular sections, 1" × 0"·5 and 0"·5 × 0"·5 being generally used, but sometimes 1" × 1" is employed.

Fig. 49.

352. With reference to the strength of timber in its capacity to resist extension, we can do but little in the lecture room. I have here a pine rod a b, of dimensions 48" × 0".5 × 0"·5, [Fig. 49]. Each end of this rod is firmly secured between two cheeks of iron, which are bolted together: the rod is suspended by its upper extremity from the hook of the epicycloidal pulley-block ([Art. 213]), which is itself supported by a tripod; hooks are attached to the lower end of the rod for carrying the weights. By placing 3 cwt. on these hooks and pulling the hand chain of the pulley-block, I find that I can raise the weight safely, and therefore the rod will resist at all events a tension of 3 cwt. From experiments which have been made on the subject, it is ascertained that about a ton would be necessary to tear such a rod asunder; hence we see that pine is enormously strong in resisting a force of extension. The tensile strength of the rod does not depend upon its length, but upon the area of the cross section. That of the rod we have used is one-fourth of a square inch, and the breaking weight of a rod one square inch in section is about four tons.