381. In the first column is a series of figures for convenience of reference. The next three columns are occupied with the dimensions of the beams. By span is meant the distance between the points of support; the real length is of course greater; the depth is that dimension of the beam which is vertical. The fifth column gives the mean of two observations of the breaking load. Thus for example, in experiment No. 5 the two beams used were each 36" × 1" × 0"·5, they were placed on points of support 30" distant, so the span recorded is 30": one of the beams was broken by a load of 58 lbs., and the second by a load of 60 lbs.; the mean between the two, 59 lbs., is recorded as the mean breaking load. In this manner the column of breaking loads has been found. The meaning of the two last columns of the table will be explained presently.

382. We shall endeavour to elicit from these observations the laws which connect the breaking load with the span, breadth, and depth of the beam.

383. Let us first examine the effect of the span; for this purpose we bring together the observations upon beams of the same section, but of different spans. Sections of 0"·5 × 0"·5 will be convenient for this purpose; Nos. 4, 6, 8, and 10 are experiments upon beams of this section. Let us first compare 4 and 8. Here we have two beams of the same section, and the span of one (40") is double that of the other (20"). When we examine the breaking weights we find that they are 19 lbs. and 36 lbs.; the former of these numbers is rather more than half of the latter. In fact, had the breaking load of 40" been ¾ lb. less, 18·25 lbs., and had that of 20" been ½ lb. more, 36·5 lbs., one of the breaking loads would have been exactly half the other.

384. We must not look for perfect numerical accuracy in these experiments; we must only expect to meet with approximation, because the laws for which we are in search are in reality only approximate laws. Wood itself is variable in quality, even when cut from the same piece: parts near the circumference are different in strength from those nearer the centre; in a young tree they are generally weaker, and in an old tree generally stronger. Minute differences in the grain, greater or less perfectness in the seasoning, these are also among the circumstances which prevent one piece of timber from being identical with another. We shall, however, generally find that the effect of these differences is small, but occasionally this is not the case, and in trying many experiments upon the breaking of timber, discrepancies occasionally appear for which it is difficult to account.

385. But you will find, I think, that, making reasonable allowances for such difficulties as do occur, the laws on the whole represent the experiments very closely.

386. We shall, then, assume that the breaking weight of a bar of 40" is half that of a bar of 20" of the same section, and we ask, Is this generally true? is it true that the breaking weight is inversely proportional to the span? In order to test this hypothesis, we can calculate the breaking weight of a bar of 30" (No. 6), and then compare the result with the observed value; if the supposition be true, the breaking weight should be given by the proportion—

30" : 40" :: 19 : Answer.

The answer is 25·3 lbs.; on reference to the table we find 25 lbs. to be the observed value, hence our hypothesis is verified for this bar.

387. Let us test the law also for the 10" bar, No. 10—

10" : 40" :: 19 : Answer.