The northern boundary of the Phoenix Park approaches the little river Tolka, which winds through a succession of delightful bits of sylvan scenery, such as may be found in the wide demesne of Abbotstown and the classic shades of Glasnevin. From the banks of the Tolka, on the opposite side of the park, the pastures ascend in a gentle slope to culminate at Dunsink, where at a distance of half a mile from the stream, of four miles from Dublin, and at a height of 300 feet above the sea, now stands the Observatory. From the commanding position of Dunsink a magnificent view is obtained. To the east the sea is visible, while the southern prospect over the valley of the Liffey is bounded by a range of hills and mountains extending from Killiney to Bray Head, thence to the little Sugar Loaf, the Two Rock and the Three Rock Mountains, over the flank of which the summit of the Great Sugar Loaf is just perceptible. Directly in front opens the fine valley of Glenasmole, with Kippure Mountain, while the range can be followed to its western extremity at Lyons. The climate of Dunsink is well suited for astronomical observation. No doubt here, as elsewhere in Ireland, clouds are abundant, but mists or haze are comparatively unusual, and fogs are almost unknown.
The legal formalities to be observed in assuming occupation exacted a delay of many months; accordingly, it was not until the 10th December, 1782, that a contract could be made with Mr. Graham Moyers for the erection of a meridian-room and a dome for an equatorial, in conjunction with a becoming residence for the astronomer. Before the work was commenced at Dunsink, the Board thought it expedient to appoint the first Professor of Astronomy. They met for this purpose on the 22nd January, 1783, and chose the Rev. Henry Ussher, a Senior Fellow of Trinity College, Dublin. The wisdom of the appointment was immediately shown by the assiduity with which Ussher engaged in founding the observatory. In three years he had erected the buildings and equipped them with instruments, several of which were of his own invention. On the 19th of February, 1785, a special grant of 200 pounds was made by the Board to Dr. Ussher as some recompense for his labours. It happened that the observatory was not the only scientific institution which came into being in Ireland at this period; the newly-kindled ardour for the pursuit of knowledge led, at the same time, to the foundation of the Royal Irish Academy. By a fitting coincidence, the first memoir published in the "Transactions Of The Royal Irish Academy," was by the first Andrews, Professor of Astronomy. It was read on the 13th of June, 1785, and bore the title, "Account of the Observatory belonging to Trinity College," by the Rev. H. Ussher, D.D., M.R.I.A., F.R.S. This communication shows the extensive design that had been originally intended for Dunsink, only a part of which was, however, carried out. For instance, two long corridors, running north and south from the central edifice, which are figured in the paper, never developed into bricks and mortar. We are not told why the original scheme had to be contracted; but perhaps the reason may be not unconnected with a remark of Ussher's, that the College had already advanced from its own funds a sum considerably exceeding the original bequest. The picture of the building shows also the dome for the South equatorial, which was erected many years later.
Ussher died in 1790. During his brief career at the observatory, he observed eclipses, and is stated to have done other scientific work. The minutes of the Board declare that the infant institution had already obtained celebrity by his labours, and they urge the claims of his widow to a pension, on the ground that the disease from which he died had been contracted by his nightly vigils. The Board also promised a grant of fifty guineas as a help to bring out Dr. Ussher's sermons. They advanced twenty guineas to his widow towards the publication of his astronomical papers. They ordered his bust to be executed for the observatory, and offered "The Death of Ussher" as the subject of a prize essay; but, so far as I can find, neither the sermons nor the papers, neither the bust nor the prize essay, ever came into being.
There was keen competition for the chair of Astronomy which the death of Ussher vacated. The two candidates were Rev. John Brinkley, of Caius College, Cambridge, a Senior Wrangler (born at Woodbridge, Suffolk, in 1763), and Mr. Stack, Fellow of Trinity College, Dublin, and author of a book on Optics. A majority of the Board at first supported Stack, while Provost Hely Hutchinson and one or two others supported Brinkley. In those days the Provost had a veto at elections, so that ultimately Stack was withdrawn and Brinkley was elected. This took place on the 11th December, 1790. The national press of the day commented on the preference shown to the young Englishman, Brinkley, over his Irish rival. An animated controversy ensued. The Provost himself condescended to enter the lists and to vindicate his policy by a long letter in the "Public Register" or "Freeman's Journal," of 21st December, 1790. This letter was anonymous, but its authorship is obvious. It gives the correspondence with Maskelyne and other eminent astronomers, whose advice and guidance had been sought by the Provost. It also contends that "the transactions of the Board ought not to be canvassed in the newspapers." For this reference, as well as for much other information, I am indebted to my friend, the Rev. John Stubbs, D.D.
The next event in the history of the Observatory was the issue of Letters Patent (32 Geo. III., A.D. 1792), in which it is recited that "We grant and ordain that there shall be forever hereafter a Professor of Astronomy, on the foundation of Dr. Andrews, to be called and known by the name of the Royal Astronomer of Ireland." The letters prescribe the various duties of the astronomer and the mode of his election. They lay down regulations as to the conduct of the astronomical work, and as to the choice of an assistant. They direct that the Provost and the Senior Fellows shall make a thorough inspection of the observatory once every year in June or July; and this duty was first undertaken on the 5th of July, 1792. It may be noted that the date on which the celebration of the tercentenary of the University was held happens to coincide with the centenary of the first visitation of the observatory. The visitors on the first occasion were A. Murray, Matthew Young, George Hall, and John Barrett. They record that they find the buildings, books and instruments in good condition; but the chief feature in this report, as well as in many which followed it, related to a circumstance to which we have not yet referred.
In the original equipment of the observatory, Ussher, with the natural ambition of a founder, desired to place in it a telescope of more magnificent proportions than could be found anywhere else. The Board gave a spirited support to this enterprise, and negotiations were entered into with the most eminent instrument-maker of those days. This was Jesse Ramsden (1735-1800), famous as the improver of the sextant, as the constructor of the great theodolite used by General Roy in the English Survey, and as the inventor of the dividing engine for graduating astronomical instruments. Ramsden had built for Sir George Schuckburgh the largest and most perfect equatorial ever attempted. He had constructed mural quadrants for Padua and Verona, which elicited the wonder of astronomers when Dr. Maskelyne declared he could detect no error in their graduation so large as two seconds and a half. But Ramsden maintained that even better results would be obtained by superseding the entire quadrant by the circle. He obtained the means of testing this prediction when he completed a superb circle for Palermo of five feet diameter. Finding his anticipations were realised, he desired to apply the same principles on a still grander scale. Ramsden was in this mood when he met with Dr. Ussher. The enthusiasm of the astronomer and the instrument-maker communicated itself to the Board, and a tremendous circle, to be ten feet in diameter, was forthwith projected.
Projected, but never carried out. After Ramsden had to some extent completed a 10-foot circle, he found such difficulties that he tried a 9-foot, and this again he discarded for an 8-foot, which was ultimately accomplished, though not entirely by himself. Notwithstanding the contraction from the vast proportions originally designed, the completed instrument must still be regarded as a colossal piece of astronomical workmanship. Even at this day I do not know that any other observatory can show a circle eight feet in diameter graduated all round.
I think it is Professor Piazzi Smith who tells us how grateful he was to find a large telescope he had ordered finished by the opticians on the very day they had promised it. The day was perfectly correct; it was only the year that was wrong. A somewhat remarkable experience in this direction is chronicled by the early reports of the visitors to Dunsink Observatory. I cannot find the date on which the great circle was ordered from Ramsden, but it is fixed with sufficient precision by an allusion in Ussher's paper to the Royal Irish Academy, which shows that by the 13th June, 1785, the order had been given, but that the abandonment of the 10-foot scale had not then been contemplated. It was reasonable that the board should allow Ramsden ample time for the completion of a work at once so elaborate and so novel. It could not have been finished in a year, nor would there have been much reason for complaint if the maker had found he required two or even three years more.