The most famous theory of the action of the inner ear is the "piano theory" of Helmholtz. The foundation of the theory is the fact that the sense cells of the cochlea stand on the "basilar membrane", a long, narrow membrane, stretched between bony attachments at either side, and composed partly of fibers running crosswise, very much as the strings of a piano or harp are stretched between two side bars. If you imagine the strings of a piano to be the warp of a fabric and interwoven with crossing fibers, you have a fair idea of the structure of the basilar membrane, except for the fact that the "strings" of the basilar membrane do not differ in length anywhere like as much as the strings of the piano must differ in order to produce the whole range of notes. Now, a piano string can be thrown into "sympathetic vibration", as when you put on the "loud pedal" (remove the dampers from the strings) and then sing a note into the piano. You will find that the string of the pitch sung has been thrown into vibration by the action of the sound waves sung against it.

Now suppose the strings of the basilar membrane to be tuned to notes of all different pitches, within the range of [{235}] audible vibrations: then each string would be thrown into sympathetic vibration whenever waves of its own vibration rate reached it by way of the outer and middle ear; and the sense cells standing over the vibrating fibers would be shaken and excited. The theory is very attractive because it would account so nicely for the great number of elementary tone sensations (there are over 20,000 fibers or strings in the basilar membrane), as well as for various other facts of hearing--if we could only believe that the basilar membrane did vibrate in this simple manner, fiber by fiber. But (1) the fabric into which the strings of the membrane are woven would prevent their vibrating as freely and independently as the theory requires; (2) the strings do not differ in length a hundredth part of what they would need to differ in order to be tuned to all notes from the lowest to the highest, and there is no sign of differences in stretch or in loading of the strings to make up for their lack of difference in length; and (3) a little model of the basilar membrane, exposed to sound waves, is seen to be thrown into vibration, indeed, and into different forms of vibration for waves of different length, but not by any means into the simple sort of vibration demanded by the piano theory. This theory is accordingly too simple, but it probably points the way towards some truer, more complex, conception.

The fact that there are many elementary sensations of hearing is the chief reason why the art of tones is so much more elaborate than the art of color; for while painting might dispute with music as to which were the more highly developed art, painting depends on form as well as color, and there is no art of pure color at all comparable with music, which makes use simply of tones (and noises) with their combinations and sequences.

[{236}]

Senses of Bodily Movement

It is a remarkable fact that some parts of the inner ear are not connected with hearing at all, but with quite another sense, the existence of which was formerly unsuspected. The two groups of sense cells in the vestibule--the otolith organs--were formerly supposed to be the sense organ for noise; but noise now appears to be a compound of tones, and its organ, therefore, the cochlea. The semicircular canals, from their arrangement in three planes at right angles to each other, were once supposed to analyze the sound according to the direction from which it came; but no one could give anything but the vaguest idea of how they might do this, and besides the ear is now known to give practically no information regarding the direction of sound, except the one fact whether it comes from the right or left, which is given by the difference in the stimulation received by the two ears, and not by anything that exists in either ear taken alone.

The semicircular canals have been much studied by the physiologists. They found that injury to these structures brought lack of equilibrium and inability to walk, swim or fly in a straight course. If, for example, the horizontal canal in the left ear is destroyed, the animal continually deviates to the left as he advances, and so is forced into a "circus movement". They found that the compensatory movements normally made in reaction to a movement impressed on the animal from without were no longer made when the canals were destroyed. They found that something very much like these compensatory movements could be elicited by direct stimulation of the end-organs in the canals or of the sensory nerves leading from them. And they found that little currents of the liquid filling the canals acted as a stimulus to these end-organs and so aroused the [{237}] compensatory movements. They were thus led to accept a view that was originally suggested by the position of the canals in space.

Fig. 40.--How the sense cells in a semicircular canal are stimulated by a water current. This current is itself an inertia back-flow, resulting from a turning of the head in the opposite direction. (Figure text: water current, nerve to brain)