If hearing you speak of Calcutta makes me think of India, your words are the stimulus and my thought the response. Well, then, if I think of Calcutta in the course of a train of thought, and next think of India, what else can we say than that the thought of Calcutta acts as a stimulus to arouse the thought of India as the response? In a long train of thought, where A reminds you of B and B of C and C of D, each of these items is, first, a response to the preceding, and, second, a stimulus to the one following.
There is no special difficulty with the notion of "central stimuli" from the physiological side. We have simply to think of one nerve center arousing another by means of the tract of axons connecting the two. Say the auditory center is aroused by hearing some one mention your friend's name, [{49}] and this promptly calls up a mental picture of your friend; here the auditory center has aroused the visual. What happens in a train of thought is that first one group of neurones is aroused to activity, and then this activity, spreading along the axons that extend from this group of neurones to another, arouses the second group to activity; and so on. The brain process may often be exceedingly complex, but this simple scheme gives the gist of it.
The way nerve currents must go shooting around the brain from one center or group of neurones to another, keeping it up for a long time without requiring any fresh peripheral stimulus, is remarkable. We have evidence of this sort of thing in a dream or fit of abstraction. Likely enough, the series of brain responses would peter out after awhile, in the absence of any fresh peripheral stimulus, and total inactivity ensue. But response of one brain center to nerve currents coming from another brain center, and not directly from any sense organ, must be the rule rather than the exception, since most of the brain neurones are not directly connected with any sense organ, but only with other parts of the brain itself. All the evidence we have would indicate that the brain is not "self-active", but only responsive; but, once thrown into activity at one point, it may successively become active at many other points, so that a long series of mental operations may follow upon a single sensory stimulus.
The Motor Centers, Lower and Higher
A "center" is a collection of nerve cells, located somewhere in the brain or cord, which gives off axons running to some other center or out to muscles or glands, while it also receives axons coming from other centers, or from sense organs. These incoming axons terminate in end-brushes and so form synapses with the dendrites of the local [{50}] nerve cells. The axons entering any center and terminating there arouse that center to activity, and this activity, when aroused, is transmitted out along the axons issuing from that center, and produces results where those axons terminate in their turn.
Fig. 12.--Side view of the left hemisphere of the brain, showing the motor and sensory areas (for the olfactory area, see [Fig. 18]). The visual area proper, or "visuo-sensory area," lies just around the corner from the spot marked "Visual," on the middle surface of the hemisphere, where it adjoins the other hemisphere. (Figure text: frontal lobe, parietal lobe, central fissure, occipital lobe, motor area, somesthetic area, auditory area, fissure of Sylvius, temporal lobe, brain stem, cerebellum)
The lower motor centers, called also reflex centers, are located in the cord or brain stem, and their nerve cells give rise to the axons that form the motor nerves and connect with the muscles and glands. A muscle is thrown into action by nerve currents from its lower motor center.
The principal higher motor center is the "motor area" of the brain, located in the cortex or external layer of gray matter, in the cerebrum. More precisely, the motor area is a long, narrow strip of cortex, lying just forward of what is called the "central fissure" or "fissure of Rolando".