To get all the color-tones, then, we need not employ all the wave-lengths, but can get along with only four. In fact, we can get along with three. Red, green and blue will do the trick. Red and green lights, combined, would give the yellows; green and blue would give the greenish blues; and red and blue would give purple and violet.
The sensation of white results--to go back to Newton--from the combined action of all the wave-lengths. But the stimulus need not contain all the wave-lengths. Four are enough; the three just mentioned would be enough. More surprising still, two are enough, if chosen just right. Mix a pure yellow light with a pure blue, and you will find that you get the sensation of white--or gray, if the lights used are not strong.
[Footnote: When you mix blue and yellow pigments, each absorbs part of the wave-lengths of white light, and what is left after this double absorption may be predominantly green. This is absolutely different from the addition of blue to yellow light; addition gives white, not green.]
Lights, or wave-lengths, which when acting together on the retina give the sensation of white or gray, are said to be complementary. Speaking somewhat loosely, we sometimes say that two colors are complementary when they mix to produce white. Strictly, the colors--or at least the color sensations--are not mixed; for when yellow and blue lights are mixed, the resulting sensation is by no means a mixture of blue and yellow sensations, but the sensation of white in which there is no trace of either blue or yellow. Mixing the stimuli which, acting separately, give two complementary colors, arouses the colorless sensation of white.
Blue and yellow, then, are complementary. Suppose we set out to find the complementary of red. Mixing red and yellow lights gives the color-tones intermediate between these two; mixing red and green still gives the intermediate color-tones, but the orange and yellow and yellowish green so got lack saturation, being whitish or grayish. Now mix red with bluish green, and this grayishness is accentuated, and if just the right wave-length of bluish green is used, no trace of orange or yellow or grass green is obtained, but white or gray. Red and bluish green are thus complementary. The complement of orange light is a greenish blue, and that of greenish yellow is violet. The typical green (grass green) has no single wave-length complementary to it, but it does give white when mixed with a compound of long and short waves, which compound by itself gives the sensation of purple; so that we may speak of green and purple as complementary.
What Are the Elementary Visual Sensations?
Returning now to the question of elementary sensations, which we laid aside till we had examined the relationship of the sensations to the stimulus, we need to be on our guard against physics, or at least against being so much impressed with the physics of light as to forget that we are concerned with the response of the organism to physical light--a matter on which physics cannot speak the final word.