With the Algae successfully living in the mud, surrounded by their mucilaginous water-reservoirs, it was but a step for some enterprising individual to extend a portion of his own tissue in search of more water. By this simple act, the first root came into being, and lo! there were terrestrial plants.

It is to be noted that all development in the plant world is born of necessity. To the plants, dependence upon water, food and the impulse to reproduction may be ascribed the start of many a new form among them. In the more complex groups we seem to see a conscious striving for higher and better things, but the lowlier species often need the goad of circumstance to force them to attainment.

When the plants first emerged upon the land, a number of structural changes became necessary. Whereas in the marine world, water is absorbed directly by all parts of the plant, in land life special organs of absorption and conductivity must be developed. At first, the roots were mere rhizoids or hairs, aided by water-drinking leaves and tubers, as in the Mosses and Liverworts today; but it was not long before true root and vascular systems were evolved. Other changes which came with terrestrial life were greater rigidity of tissue and devices to guard against evaporation. Leaves were developed for the purposes of manufacturing starch by photosynthesis, spreading out into thin layers in order to present the greatest possible surface.

These lower land plants retained and still retain some characteristics of their aquatic ancestry, notably swimming spore cells, as in the Mosses. The formation of rigid cellulose about vegetable cells stops their movement, except when cilia or projections of protoplasm extend through openings in the cell walls. The Liverworts were probably among the first real land plants: their spores are non-motile and they have a massive, foot-like organ for the absorption of water.

To the liberality of Nature we must ascribe the development of the law which ties the plants to the soil. They started out as animals, but enjoyed such an abundance of food that it became unnecessary for them to go in search for it. Water and carbon dioxide, which formed their principal means of subsistence, were all about them; they settled down to a life of quiet ease. When Corals, Sponges, Oysters and other lower animals are similarly situated, they become as firmly rooted as any plant. Moreover, they have free-swimming larvae analogous to the active zoospores of certain members of the plant world.

The first land vegetation of the globe must have presented a curious spectacle. Imagine a forest consisting of endless repetitions of Algae, Fungi, Lichens, Liverworts and Mosses, with many forms of gigantic sizes. The fresh-water Algae early developed a clever device to save their race from extinction by drought. Certain cells in each plant became hard and devoid of water, presenting that phenomenon of suspended animation to be observed in many of the higher seeds. When drought overtook any particular plant, it died, but these special restive cells lived, and were carried about by the wind or other agencies until a new abundance of moisture called them out of their trance. As zygotes, they exist in the Nostoc today.

The first plants were non-sexual and propagated by cell division. They were therefore capable of little advancement. With the introduction of the sex element, infinite possibilities for racial improvement and differentiation were opened up. The Mosses and Ferns belonging to the family Archegoniatae early established an alternation of generation in which the spores give rise to a small plant which looks like a Liverwort and bears the reproductive organs. The fertilized ovum of this plant grows into a leafy, sexless individual which produces spores non-sexually. We therefore have a generation endowed with sex organs making for development and progress, alternating with a sexless generation calculated to continue the tendencies of the race.

It is undoubtedly the sex element which accounts for those “sports” or mutations in plantdom which occasionally overstep the limits of species to form new species.

In the luxurious atmosphere of the early globe, vegetation waxed strong and vigorous and attained remarkable proportions. The primeval woods served to draw the superabundant carbon from the air and in millions of decayed bodies store it up as graphite, coal, petroleum and illuminating gas. The present day graphite beds alone represent vast quantities of ancient vegetation. It is a unique experience to be able to write or draw pictures of these prehistoric plants and use, in the carbon of our pencils, portions of their very bodies.

Everything was on a grand scale in the “Old Red Sandstone” age. There were no real trees yet, but the Asterophyllites, with their tall, slender stems, looked much like Palms. The Eryptogams were immense Mushrooms. Algae, Zostera and Psilophytons covered the shores with a tangle of seaweed vegetation.