Hygrometers.—As the humidity or degree of moisture in the atmosphere is a very important climatic factor it is necessary to measure it as carefully and as frequently as the temperature of the air. There are many instruments, called psychrometers or hygrometers, for doing this; but few of them are simple enough for the use of a traveller. The proportion of water-vapour in air is a little difficult to understand at first, because it is not a constant quantity as in the case of the other constituents of air, but varies according to the amount of water-surface exposed to the air and according to the temperature. The maximum amount of water-vapour which can be present in air varies with the temperature, being greater as the temperature is higher and less as the temperature is lower. Thus, if air at 50° F. contains the maximum amount of water-vapour which it can contain at that temperature, it is said to be saturated, for it will take up no more and evaporation stops; and if the temperature were to fall ever so little there would be more water-vapour present in the air than it could hold and some would separate out and condense into dew or rain, hence the temperature of saturation is called the dew-point. But if air saturated at 50° is warmed up say to 60° it can then contain more water-vapour than it has, and the temperature would require to fall 10° before dew or rain could form. When the air is not saturated water exposed to it evaporates rapidly until the maximum quantity of water-vapour is again present, a larger quantity corresponding to the higher temperature. At any given temperature the essential thing to know about the humidity of the air is the additional amount of water-vapour it could take up before becoming saturated, or in other words the humidity relative to the maximum humidity possible at the existing temperature. The relative humidity is expressed in percentages of the maximum humidity possible (saturation) at the actual temperature of observation. It may be measured by two methods, (1) finding the dew-point or temperature at which the amount of vapour present saturates the air; (2) by finding the rate at which the air allows evaporation to proceed; the farther the air is from saturation the more rapid is the rate.
The dew-point may be found directly by means of an instrument by which the air is cooled down until it begins to deposit moisture on a polished surface, but such an instrument is inconvenient to handle when travelling. It may also be found indirectly by calculation from the relative humidity.
The relative humidity is most easily calculated from the rate of evaporation. It is one of the laws of evaporation that heat is required to change liquid into vapour, and when evaporation is going on heat is being abstracted from surrounding bodies, and they are growing colder. By allowing evaporation to take place from the bulb of a thermometer the rate of evaporation may be measured by the fall of temperature produced, and tables have been constructed to convert the differences between the wet and dry bulb readings into relative humidities.
The wet-bulb thermometer consists of an ordinary thermometer, the bulb of which is covered with clean muslin and kept moist by means of a piece of cotton lamp-wick dipping into a small vessel of pure water. Care must be taken to have the water quite pure and free from salt, otherwise the true reduction of temperature will not be observed. Hence special precautions are necessary when observing at sea or in an arid country where the ground is covered with incrustations of salt.
In any form of wet bulb thermometer when the air is much below the freezing point, it will usually be found most satisfactory to remove the muslin covering and allow the bulb to become covered with a coating of ice, by dipping it into water and allowing the water to freeze upon it. Evaporation takes place from solid ice sufficiently rapidly to give the true wet-bulb readings at least with a sling thermometer.
When the air is saturated, i.e., relative humidity = 100 per cent., there is no difference in the reading of the wet and dry bulb thermometers, and the greater the difference between the readings at a given air temperature the smaller is the relative humidity of the air.
The wet-bulb thermometer has to be exposed to the air with the same precautions as are taken in the case of the dry bulb. The two may be hung side by side—but at least six inches apart—in the screen or cage described on [p. 15]; or the wet bulb may be employed as a sling thermometer. One way to do this is to tie a muslin cap on the bulb of the sling thermometer with a piece of wet lamp-wick coiled round the upper part of the bulb, and then whirl it until the reading becomes constant, taking care to moisten the bulb again if it should become dry. Another way is simply to twist a piece of filter-paper or blotting-paper round the bulb, and dip it in water before swinging.
Aspiration Psychrometer.—Perhaps the most convenient form of wet and dry bulb thermometer for use by a traveller is that known as Assmann’s Aspiration Psychrometer. It requires no protecting screen, is not subject to the risk attending the use of the sling thermometer, and gives an extremely close approximation to the true temperature and humidity. The principle of the instrument is very simple. The wet and dry bulb thermometers are enclosed separately each in an open tube (see Fig. 4) through which a current of air is drawn by means of a fan, actuated by clockwork in the upper part of the case. In making an observation, all that is required is to see that the water vessel for the wet bulb is filled and the bulb properly moist, and that the dry bulb is free from any condensed moisture. The instrument is then hung to a branch or other support placed in the open air (or even held in the hand), preferably in the shade, although this is not essential, and the clockwork wound up. Air will then be drawn over the bulbs for five minutes or more, and if the temperature of each thermometer has not become steady by the time the clockwork has run down, it must be wound up again.