The researches of chemists have succeeded in discovering about 70 substances, of which the same may be said as of the oxygen and hydrogen into which water is decomposed, viz. that they cannot be decomposed by any known process, and must therefore be considered as ultimate and elementary. Their atoms differ widely in size and weight: that of mercury, for instance, being 200 times heavier than that of hydrogen, and the weights varying from 1 mc. for the hydrogen atom, up to 240 for that of uranium. When we call them elementary substances, we merely mean that we know no means of decomposing them. It is possible that all of them may be compounds which we cannot take to pieces of some substratum of uniform matter, and it is remarkable that the weight of nearly all of these elementary atoms is some simple multiple of that of hydrogen, pointing to their being all combinations of one common substratum of matter; but this is merely conjecture, and in the present state of our knowledge we must assume these 66 or 71 ultimate particles or atoms to be the indivisible units out of which all the complicated puzzle of the material universe is put together. They are not all equally important to us. Of the 71 elementary substances enumerated in chemical treatises, 5 are doubtful, and 30 to 35 of the remainder are either known only to chemists in minute quantities, or exist in nature in small quantities, having no very material bearing upon man’s relation to matter. The most important are oxygen, hydrogen, nitrogen, and carbon. Oxygen diluted by nitrogen gives us the air we breathe, combined with hydrogen the water we drink, and with metals and other primitive bases the solid earth on which we tread. Carbon again is the great basis of organised matter and life, to which it leads up by a variety of complex combinations with oxygen, hydrogen, and nitrogen.

The qualities and relations of elementary atoms afford a subject of great interest, but of such vast extent that those who wish to understand it must be referred to professed works on modern chemistry. For the present purpose it is sufficient to say that the following conclusions are firmly established.

All the various forms of matter are composed of combinations of primitive atoms which form molecules, the molecules being neither more nor less than very small pieces of ordinary matter.

The qualities of this matter, or, what is the same thing, of its molecules, depend partly on the qualities of the atoms, which are something quite distinct from those of the molecules, and partly on their mode of aggregation into molecules, affecting the form, size, stability, and other attributes of the molecule.

All matter, down to the smallest atom, has definite weight and is indestructible. No man by taking thought can add the millionth of a milligramme to the weight of any substance, or make it either more or less than the sum of the weights of its component factors, any more than he can add a cubit to his stature. When Shelley sang of the cloud,

I change, but I cannot die,

he enunciated a scientific axiom of the first importance. Creation, in the sense of making something out of nothing, is a thing absolutely unknown and unknowable to us. If we say we make a ship or a steam-engine, we simply mean that we transform existing matter and existing energies into new combinations, which give results convenient for our purpose. So if we talk of making a world, our idea really is that if our powers and knowledge were indefinitely increased we might be able, given the atoms and energies with their laws of existence, to put them together so as to produce the desired results. But how the atoms and their inherent laws got there is a question as to which knowledge, or even conceivability, is impossible, for it altogether transcends human experience.

Before finally taking leave of atoms it may be well to state shortly that science, not content with having proved their existence and weighed them in terms of the lightest element, the hydrogen atom, has attempted, not without success, to solve the more difficult problem of their real dimensions, intervals, and velocities. This problem has been attacked by Clausius, Sir W. Thomson, Clerk Maxwell, and others, from various sides: from a comparison with the wave-lengths of light; with the tenuity of the thinnest films of soap-bubbles just before they burst, and when they are presumably reduced to a single layer of molecules; and from the kinetic theory of gases, involving the dimensions, paths, and velocities of elastic bodies, constantly colliding, and by their impacts producing the resulting pressure on the confining surface. All these methods involve such refined mathematical calculations that it is impossible to explain them popularly, but they all lead to nearly identical results, which involve figures so marvellous as to be almost incomprehensible. For instance, a cubic centimetre of air is calculated to contain 21 trillions of molecules—i.e. 21 times the cube of a million, or 21 followed by 18 ciphers; the average distance between each molecule equals 95 millionths of a millimetre, which is about 25 times smaller than the smallest magnitude visible under a microscope; the average velocity of each molecule is 447 metres per second; and the average number of impacts received by each molecule in a second is 4,700 millions.