Another primary fact is that some substances are able to carry away and diffuse or neutralise this peculiar influence called electricity, while others are unable to do so and retain it. The former are called conductors, the latter non-conductors. Thus, glass is an insulator or non-conductor, while metal is a conductor of electricity; and the reason why the substances rubbed together, as glass and silk, must be dry is that water, in all its forms, is a conductor which carries away the electricity as fast as it is produced.
These facts have given rise to a theory—which is after all not so much an explanation as a convenient mode of expressing the facts—of the existence of two opposite electric fluids, which, in the ordinary or unexcited body, are combined and neutralise one another, but are separated by friction, and flow in opposite directions, accumulating at opposite poles, or, it may be, one being accumulated at one pole, while the other is diffused through some conducting medium and lost sight of. The active electricity, be it positive or negative, thus accumulated at one pole, and retained there by the substance in contact with it being a non-conductor, disturbs by its influence the electrical equilibrium of any body brought near to it, separates its two fluids, and attracts the one opposite to itself. This attraction draws the light body towards it until contact ensues, when the electric fluid of the excited body flows into the smaller one, so that its opposite electricity is expelled, and it is in the same condition as its exciter, and therefore liable to be repelled by a similar exciter, or attracted by an opposite one which formerly repelled it.
It is evident, without going further, that there is a great analogy between electrical energy and those of heat and of chemical affinity. The same mechanical work—viz. friction—which generates heat, generates electricity. The chief difference seems to be that friction may be transformed into heat when the same substances are rubbed together, as in the case of obtaining fire by the friction of wood; but electricity can only be obtained by friction between dissimilar substances. Thus no electricity is obtained by rubbing glass upon glass, or silk upon silk, or upon glass covered with silk, though a slight difference of texture is sometimes sufficient to separate the electric fluids. Thus if two pieces of the same silk ribbon are rubbed together, lengthways, no electricity is produced, but if crossways, one is positively, and the other negatively, electrified. In this respect the analogy is evident to chemical affinity, which, in like manner, only acts between dissimilar bodies.
In order, however, to carry the proof of the identity of these forms of energy beyond the sphere of vague analogy, we must follow up electricity far beyond the simple manifestations of the glass rod and sealing-wax, and pursue it to its origin, in the transformations of chemical action and mechanical work, in the voltaic battery, the electric telegraph, the telephone, and the dynamo.
The voltaic battery, in its simplest form, is a trough containing an acid liquid in which pairs of plates of different metals are immersed. It is evident that if the action of the acid on each metal were precisely the same, equal quantities of each would be dissolved in the acid, and the equilibrium of chemical energies would not be affected. But, the action being different, this equilibrium is disturbed, and if the sum of these disturbances for a number of separate pairs of plates can be accumulated, it will become considerable. This is done by connecting the plates of the same metal in each cell by a metallic wire covered by some non-conducting substance. There are, therefore, two wires, one to the right hand, the other to the left, the loose extremities of which are called the poles of the battery. If we test these poles as we did the glass rod and stick of sealing-wax, we find that one pole is charged with positive and the other with negative electricity. In other words, the chemical energy, whose equilibrium was disturbed by the unequal action of the acid on the plates of different metals, has been transformed into electrical energy manifesting itself, as it always does, under the condition of two equal and opposite polarities. If we connect these two poles with one another the two electricities rush together and unite, and there is established what is called an electrical current circulating round the battery. As the chemical action of the acid on the metals is not momentary but continuous, the acid taking up molecule after molecule of the metal, so also the current is continuous. When we call it a current, the term is used for the sake of convenience, for as the current, as we shall presently see, will flow along the wire or other conducting substance for immense distances, as across the Atlantic, with a velocity of many thousands of miles per second, we can, no more than in the case of light, figure it to ourselves as an actual transfer of material particles swept along as by a river running with this enormous velocity, but necessarily as a transmission of some form of motion travelling by waves or tremors through the all-pervading ether in which the atoms of the conducting wire are floating. Be this as it may, the effect of these electric currents is very varied and very energetic. It can produce intense heat, for if, instead of uniting the two poles, we connect them by a thin platinum wire, it will, in a few seconds, become heated to redness. If the connecting wire is thicker, heat will equally be generated but less intense, thus maintaining the analogy to the current which rushes with more impetuosity through a narrow than through a wide channel. If the poles are tipped with a solid substance like carbon, whose particles remain solid under great heat, when they are brought nearly together intense light is produced and the carbon slowly burns away. This produces what is called the arc light, which gives such a strong illuminating power and is coming into general use for lighting up large spaces.
Another transformation is back again into chemical energy, which is shown by the power of the electric current to decompose compound substances. If, for instance, the poles of a battery are plunged into a vessel containing water, the molecules of the water will be decomposed and bubbles of oxygen gas will rise from the positive, and of hydrogen from the negative, pole.
Another effect of electrical currents is that of attraction and repulsion on one another. If two parallel wires, free to move, carry currents flowing in the same direction as from positive to negative, or vice versâ, they will attract one another; if in opposite directions, they will repel. Electrical currents also work by way of induction, that is, they disturb the electrical equilibrium of bodies brought within their influence and induce currents in them. Thus, if we have two circular coils of insulated wire placed near each other, one on the right hand, the other on the left, and connect the extremities of the right-hand coil with the poles of a battery, when the connection is first made and the current begins to flow, a momentary current in the opposite direction will pass through the left-hand coil. This will cease, and as long as the current continues to flow through the right-hand coil there will be no current through the other; but if we break the contact between the right-hand coil and the battery, there will be again a momentary current through the left-hand coil, but this time in the same direction as the other. The same effect will be produced if, instead of making and breaking contact in the right-hand coil, we keep the current constantly flowing through it, and make the right-hand coil alternately approach and recede from the other coil. In this case, when the right-hand coil approaches, it induces an opposite current in the left-hand one; and when it recedes, one in the same direction as that of the primary.
These phenomena of induction prepare us to understand the nature of magnets, and the magnetic effects produced by electrical currents. If an insulated wire is wrapped round a cylinder of soft or unmagnetic iron, and a current passed through the wire, the cylinder is converted into a magnet and becomes able to sustain weights. If the current ceases, the cylinder is no longer a magnet, and drops the weight. A magnet is therefore evidently a substance in which electric currents are circulating at right angles to its axis, and a permanent magnet is one in which such currents permanently circulate from the constitution of the body without being supplied from without. The earth is such a magnet, and also iron and other substances, under certain conditions.
This being established, it is easy to see why an electrical current deflects the magnetic needle. If such a needle is suspended freely near a wire parallel with it, on a current being passed through the wire it must attract if similar, or repel if dissimilar, the currents which are circulating at right angles to the axis of the needle, and thus tend to make the needle swing into a position at right angles with the wire so that its currents may be parallel to that of the needle. This is the reason why the needle in its ordinary condition points to the north and south, or rather to the magnetic poles of the earth, because its currents are influenced by the earth currents which circulate parallel to the magnetic equator. The deviation of the needle from this direction, caused by any other current, like that passed along the wire, will depend on the strength of the current, which may be measured by the amount of deflection of the needle. The direction in which the needle deflects, viz. whether the north pole swings to the right or to the left, will depend on the direction of the current through the wire. The direction of the circular currents which form a magnet is such that if you look towards the north pole of a freely suspended cylindrical magnet—i.e. if you stand on the north of it and look southwards—the positive current will ascend on your right hand, or on the west side, and descend on the east. It follows that unlike poles must necessarily attract, and like poles repel one another, for in the former case the circular currents which face each other are going in the same, and in the latter in opposite directions.
The reader is now in a position to understand the principle of the electric telegraph, that wonderful invention which has revolutionised human intercourse and, to a great extent, annihilated space and time. It originated in the discovery made by Oersted, a Danish savant, that the effect of an electric current was to make a magnet swing round, in the endeavour to place itself at right angles to it. The conducting power of insulated copper wire is such that it practically makes no difference whether one of the wires connected with the pole of a battery is two feet or 2,000 miles in length, and the earth, being a conducting medium, supplies an equal extension from the other pole, so that a closed electric circuit may be established across the Atlantic as easily as within the walls of a laboratory.