The senior members of the firm had for some time been gradually withdrawing from the active management of the concern. We find Watt writing to Dr. Black in 1798,—“In regard to the engine business, I now take little part in it, but it goes on successfully.” Four years later he wrote,—“Our engine trade thrives; the profits per cent. are, however, very, very moderate; it is by the great capital and expensive establishment of engineers, &c., that we keep it up; without our tools and men very little could be done, as we have many competitors, some of whom are men of abilities.” But the business was now safe in the hands of the young and active partners, who continued to carry it on for many years, with even greater success than their fathers had done. They reaped the harvest of which the others had sown the seed. The patent right expired in 1800; but the business of the firm, nevertheless, became larger and more remunerative than it had ever been before. The superior plant which they had accumulated, their large and increasing capital, the skilled workmen whom they had trained, and the first-class character of the work which they turned out, gave the establishment of Boulton and Watt a prestige which they long continued to maintain.

WILLIAM MURDOCK.

The young partners had also the great advantage of the skilled heads of the different departments, who had been trained by long and valuable experience. For many years William Murdock was the Mentor of the firm. Though tempting offers of partnerships were made to him, he remained loyal to Boulton and Watt to the last. They treated him generously, and he was satisfied to spend his life in their service. He had gradually worked his way to the foremost place in their establishment, besides achieving reputation as an inventor and a man of practical science. His model locomotive of 1784 was the first machine of the kind made in this country; and it is to be regretted that he did not pursue the subject. But Murdock was a very modest, unambitious man, content to keep in the background, and not possessed by that “pushing” quality which helps so many on to fortune. We have already stated that he invented the sun and planet motion, which was eventually adopted by Watt in preference to his own method of securing rotary motion. His daily familiarity with pumping-engines in Cornwall also led him to suggest and introduce many improvements in their details, which Boulton and Watt were always ready to adopt. He was a great favourite in Cornwall, and not less esteemed for his estimable and manly qualities than for his mechanical skill. When the adventurers heard of his intention to return to Soho, in 1798, they offered him 1000l. a year to continue at the mines, but he could not be tempted to remain.

Returned to Soho, Murdock was invested with the general supervision and management of the mechanical department, in which he proved of essential value. He was regarded as “the right hand” of Boulton and Watt. He proceeded to introduce great improvements in the manufacture of the engines, contriving numerous machines for casting, boring, turning, and fitting the various parts together with greater precision. His plan of boring cylinders by means of an endless screw (turned by the moving power) working into a toothed wheel, whose axis carried the cutter head, instead of by spur gear, was found very useful in practice, and produced a much more smooth and steady motion of the machine. As early as 1785, he invented the first oscillating engine,[350] which still continues in use in various improved forms. His invention of the double D slide valve, in place of the four poppet valves in Watt’s double engine,[351] was also found of great value; saving steam, and ensuring greater simplicity in the construction and working of the engine. In his oscillating engine the motion is given to the slide valve by the oscillation of the cylinder, and engines of small power still continue to be worked in this manner. Another of his improvements in engine construction was his method of casting the steam cases for cylinders in one piece, instead of in separate segments bolted together, according to the previous practice. He also invented a rotary engine of an ingenious construction; but though he had one erected to drive the machines in his private workshop, where it continued employed for about thirty years, it never came into general use.[352] Murdock had a good deal of the temperament of Watt: he was always scheming improvements, and was most assiduous in carrying them out. In such cases he would not trust to subordinates, but executed his designs himself wherever practicable; and he sometimes carried his labours so far into the night that the rising sun found him at his anvil or his turning lathe.

Murdock is also entitled to the merit of inventing lighting by gas. The inflammable qualities of the air obtained by distillation of coal had long been known,[353] but Murdock was the first to apply the knowledge to practical uses. The subject engaged much of his attention in the year 1792, when he resided at Redruth. As his days were fully occupied in attending to his employers’ engine business, it was only in the evenings, after the day’s work was over, that he could pursue the subject. It is not improbable that he was led to undertake the investigation by Mr. Boulton’s chemical enthusiasm, which communicated itself to all with whom he came in contact. It will be remembered that the latter occupied much of his leisure at Cosgarne in analysing earths, minerals, and vegetable substances, trying to find out the gases they contained; and Murdock was his zealous assistant on these occasions. In the paper which he communicated to the Royal Society on the subject of lighting by coal-gas in 1808, for which they awarded him their large Rumford Gold Medal, he observed,—

“It is now nearly sixteen years since (1792), in the course of experiments I was making at Redruth, in Cornwall, upon the quantities and qualities of the gas produced by distillation from different mineral and vegetable substances, that I was induced by some observations I had previously made upon the burning of coal, to try the combustible property of the gases produced from it, as well as from peat, wood, and other inflammable substances; and being struck with the great quantities of gas which they afforded, as well as the brilliancy of the light, and the facility of its production, I instituted several experiments with a view of ascertaining the cost at which it might be obtained, compared with that of equal quantities of light yielded by oils and tallow. My apparatus consisted of an iron retort, with tinned iron and copper tubes, through which the gas was conducted to a considerable distance; and there, as well as at intermediate points, was burnt through apertures of various forms and dimensions. The experiments were made upon coal of different qualities, which I procured from different parts of the kingdom for the purpose of ascertaining which would give the most economical results. The gas was also washed with water, and other means were employed to purify it.”[354]

Murdock put his discovery to the best practical test by lighting up his house and offices at Redruth with gas; and he had a gas lantern constructed, with a jet attached to the bottom of the lantern and a bladder of gas underneath, with which he lighted himself home at night across the moors when returning from his work to his house at Redruth.[355] On the occasion of a visit which he made to Soho in 1794, he took the opportunity of mentioning to Mr. Watt the experiments he had made, and their results; expressing his conviction of the superior economy, safety, and illuminating qualities of coal-gas, compared with oils and tallow. He then suggested that a patent should be taken out for the application, and at various subsequent periods he urged the subject upon the attention of his principals. But they were at the time so harassed by litigation in connexion with their own steam-engine patent, that they were unwilling to enter upon any new enterprise which might possibly lead them into fresh embroilments; and nothing was done to protect the invention.

On Murdock’s return to Soho in 1798, he proceeded with his investigations, and contrived an apparatus for making, purifying, and storing the gas on a large scale; and several of the offices in the building were regularly lighted by its means. On the general illumination which took place in celebration of the Peace of Amiens in 1802, the front of Soho Manufactory was brilliantly illuminated with gas, to the astonishment and admiration of the public. The manageableness, the safety, the economy, and the brilliancy of the new light being thus proved, Boulton and Watt in 1803 authorised Murdock to proceed with the general fitting up of the manufactory with pipes and burners, and, from that date, it continued to be regularly lit up with coal-gas. Several large firms followed their example; amongst others Phillips and Lee, Burley, and Kennedy, at Manchester, and Gott and Sons, at Leeds; and the manufacture of gas-making apparatus became one of the regular branches of business at Soho. Several years later, in 1805, when Watt went down to Glasgow, he found gas in pretty general use.

“The new lights,” he wrote to Boulton, “are much in vogue here; many have attempted them, and some have succeeded tolerably in lighting their shops with them. I also hear that a cotton-mill in this neighbourhood is lighted up with gas. A long account of the new lights was published in the newspapers some time ago, in which they had the candour to ascribe the invention to Mr. Murdock. From what I have heard respecting these attempts, I think there is full room for the Soho improvements,[356] though, when once they see one properly executed, it will have numerous imitations.”