For many years previous to this period, ingenious mechanics had been engaged in attempting to solve the problem of the best and most economical boiler for the production of high-pressure steam. As early as 1803, Mr. Woolf patented a tubular boiler, which was extensively employed at the Cornish mines, and was found greatly to facilitate the production of steam, by the extension of the heating surface. The ingenious Trevithick, in his patent of 1815, seems also to have entertained the idea of employing a boiler constructed of “small perpendicular tubes,” with the same object of increasing the heating surface. These tubes were to be closed at the bottom, and open into a common reservoir, from which they were to receive their water, and where the steam of all the tubes was to be united.

About the same time George Stephenson was trying the effect of introducing small tubes in the boilers of his locomotives, with the object of increasing their evaporative power. Thus, in 1829, he sent to France two engines constructed at the Newcastle works for the Lyons and St.

Etienne Railway, in the boilers of which tubes were placed containing water. The heating surface was thus found to be materially increased; but the expedient was not successful, for the tubes, becoming furred with deposit, shortly burned out and were removed. It was then that M. Seguin, the engineer of the railway, pursuing the same idea, adopted his plan of employing horizontal tubes through which the heated air passed in streamlets. Mr. Henry Booth, the secretary of the Liverpool and Manchester Railway, without any knowledge of M. Seguin’s proceedings, next devised his plan of a tubular boiler, which he brought under the notice of Mr. Stephenson, who at once adopted it, and settled the mode in which the fire-box and tubes were to be mutually arranged and connected. This plan was adopted in the construction of the celebrated “Rocket” engine, the building of which was immediately proceeded with at the Newcastle works.

The principal circumstances connected with the construction of the “Rocket,” as described by Robert Stephenson to the author, may be briefly stated. The tubular principle was adopted in a more complete manner than had yet been attempted. Twenty-five copper tubes, each three inches in diameter, extended from one end of the boiler to the other, the heated air passing through them on its way to the chimney; and the tubes being surrounded by the water of the boiler, it will be obvious that a large extension of the heating surface was thus effectually secured. The principal difficulty was in fitting the copper tubes within the boiler so as to prevent leakage. They were made by a Newcastle coppersmith, and soldered to brass screws which were screwed into the boiler ends, standing out in great knobs. When the tubes were thus fitted, and the boiler was filled with water, hydraulic pressure was applied; but the water squirted out at every joint, and the factory floor was soon flooded. Robert went home in despair; and in the first moment of grief, he wrote to his father that the whole thing was a failure. By return of post came a letter from

his father, telling him that despair was not to be thought of—that he must “try again;” and he suggested a mode of overcoming the difficulty, which his son had already anticipated and proceeded to adopt. It was, to bore clean holes in the boiler ends, fit in the smooth copper tubes as tightly as possible, solder up, and then raise the steam. This plan succeeded perfectly, the expansion of the copper tubes completely filling up all interstices, and producing a perfectly watertight boiler, capable of withstanding extreme internal pressure.

The mode of employing the steam-blast for the purpose of increasing the draught in the chimney, was also the subject of numerous experiments. When the engine was first tried, it was thought that the blast in the chimney was not strong enough to keep up the intensity of the fire in the furnace, so as to produce high-pressure steam in sufficient quantity. The expedient was therefore adopted of hammering the copper tubes at the point at which they entered the chimney, whereby the blast was considerably sharpened; and on a further trial it was found that the draught was increased to such an extent as to enable abundance of steam to be raised. The rationale of the blast may be simply explained by referring to the effect of contracting the pipe of a water-hose, by which the force of the jet of water is proportionately increased. Widen the nozzle of the pipe, and the force is in like manner diminished. So is it with the steam-blast in the chimney of the locomotive.

Doubts were, however, expressed whether the greater draught secured by the contraction of the blast-pipe was not counterbalanced in some degree by the negative pressure upon the piston. A series of experiments was made with pipes of different diameters; the amount of vacuum produced being determined by a glass tube open at both ends, which was fixed to the bottom of the smoke-box, and descended into a bucket of water. As the rarefaction took place, the water would of course rise in the tube; and the height to which it rose above the surface

of the water in the bucket was made the measure of the amount of rarefaction. These experiments proved that a considerable increase of draught was obtained by the contraction of the orifice; accordingly, the two blast-pipes opening from the cylinders into either side of the “Rocket” chimney, and turned up within it, were contracted slightly below the area of the steam-ports; and before the engine left the factory, the water rose in the glass tube three inches above the water in the bucket.

The other arrangements of the “Rocket” were briefly these:—the boiler was cylindrical with flat ends, 6 feet in length, and 3 feet 4 inches in diameter. The upper half of the boiler was used as a reservoir for the steam, the lower half being filled with water. Through the lower part, 25 copper tubes of 3 inches diameter extended, which were open to the fire-box at one end, and to the chimney at the other. The fire-box, or furnace, 2 feet wide and 3