While before the same Committee, he took the opportunity of stating his views with reference to railway speed, about which wild ideas were then afloat—one gentleman of celebrity having publicly expressed the opinion that a speed of 100 miles an hour was practicable in railway travelling! Not many years had passed since George Stephenson had been pronounced insane for stating his conviction that 12 miles an hour could be performed by the locomotive; but now that he had established the fact, and greatly exceeded that speed, he was thought behind the age because he recommended the rate to be limited to 40 miles an hour. He said: “I do not like either 40 or 50 miles an hour upon any line—I think it is an unnecessary speed; and if there is danger upon a railway, it is high velocity that creates it. I should say no railway ought to exceed 40 miles an hour on the most favourable gradient; but upon a curved line
the speed ought not to exceed 24 or 25 miles an hour.” He had, indeed, constructed for the Great Western Railway an engine capable of running 50 miles an hour with a load, and 80 miles without one. But he never was in favour of a hurricane speed of this sort, believing it could only be accomplished at an unnecessary increase both of danger and expense.
“It is true,” he observed on other occasions, “I have said the locomotive engine might be made to travel 100 miles an hour; but I always put a qualification on this, namely, as to what speed would best suit the public. The public may, however, be unreasonable; and 50 or 60 miles an hour is an unreasonable speed. Long before railway travelling became general, I said to my friends that there was no limit to the speed of the locomotive, provided the works could be made to stand. But there are limits to the strength of iron, whether it be manufactured into rails or locomotives; and there is a point at which both rails and tyres must break. Every increase of speed, by increasing the strain upon the road and the rolling stock, brings us nearer to that point. At 30 miles a slighter road will do, and less perfect rolling stock may be run upon it with safety. But if you increase the speed by say 10 miles, then everything must be greatly strengthened. You must have heavier engines, heavier and better-fastened rails, and all your working expenses will be immediately increased. I think I know enough of mechanics to know where to stop. I know that a pound will weigh a pound, and that no more should be put upon an iron rail than it will bear. If you could ensure perfect iron, perfect rails, and perfect locomotives, I grant 50 miles an hour or more might be run with safety on a level railway. But then you must not forget that iron, even the best, will ‘tire,’ and with constant use will become more and more liable to break at the weakest point—perhaps where there is a secret flaw that the eye cannot detect. Then look at the rubbishy rails now manufactured on the contract system—some of them
little better than cast metal: indeed, I have seen rails break merely on being thrown from the truck on to the ground. How is it possible for such rails to stand a 20 or 30 ton engine dashing over them at the speed of 50 miles an hour? No, no,” he would conclude, “I am in favour of low speeds because they are safe, and because they are economical; and you may rely upon it that, beyond a certain point, with every increase of speed there is an increase in the element of danger.”
When railways became the subject of popular discussion, many new and unsound theories were started with reference to them, which Stephenson opposed as calculated, in his opinion, to bring discredit on the locomotive system. One of these was with reference to what were called “undulating lines.” Among others, Dr. Lardner, who had originally been somewhat sceptical about the powers of the locomotive, now promulgated the idea that a railway constructed with rising and falling gradients would be practically as easy to work as a line perfectly level. Mr. Badnell went even beyond him, for he held that an undulating railway was much better than a level one for purposes of working. For a time, this theory found favour, and the “undulating system” was extensively adopted; but Mr. Stephenson never ceased to inveigh against it; and experience has amply proved that his judgment was correct. His practice, from the beginning of his career until the end of it, was to secure a road as nearly as possible on a level, following the course of the valleys and the natural line of the country: preferring to go round a hill rather than to tunnel under it or carry his railway over it, and often making a considerable circuit to secure good, workable gradients. He studied to lay out his lines so that long trains of minerals and merchandise, as well as passengers, might be hauled along them at the least possible expenditure of locomotive power. He had long before ascertained, by careful experiments at Killingworth, that the engine expends half of its power in overcoming a rising gradient of 1 in 260, which is about
20 feet in the mile; and that when the gradient is so steep as 1 in 100, not less than three-fourths of its power is sacrificed in ascending the acclivity. He never forgot the valuable practical lesson taught him by the early trials which he had made and registered long before the advantages of railways had been recognised. He saw clearly that the longer flat line must eventually prove superior to the shorter line of steep gradients as respected its paying qualities. He urged that, after all, the power of the locomotive was but limited; and, although he and his son had done more than any other men to increase its working capacity, it provoked him to find that every improvement made in it was neutralised by the steep gradients which the new school of engineers were setting it to overcome. On one occasion, when Robert Stephenson stated before a Parliamentary Committee that every successive improvement in the locomotive was being rendered virtually nugatory by the difficult and almost impracticable gradients proposed on many of the new lines, his father, on his leaving the witness-box, went up to him, and said, “Robert, you never spoke truer words than those in all your life.”
To this it must be added, that in urging these views Mr. Stephenson was strongly influenced by commercial considerations. He had no desire to build up his reputation at the expense of railway shareholders, nor to obtain engineering éclat by making “ducks and drakes” of their money. He was persuaded that, in order to secure the practical success of railways, they must be so laid out as not only to prove of decided public utility, but also to be worked economically and to the advantage of their proprietors. They were not government roads, but private ventures—in fact, commercial speculations. He therefore endeavoured to render them financially profitable; and he repeatedly declared that if he did not believe they could be “made to pay,” he would have nothing to do with them. He was not influenced by the sordid consideration of what he could make out of any company that employed him; indeed, in
many cases he voluntarily gave up his claim to remuneration where the promoters of schemes which he thought praiseworthy had suffered serious loss. Thus, when the first application was made to Parliament for the Chester and Birkenhead Railway Bill, the promoters were defeated. They repeated their application, on the understanding that in event of their succeeding, the engineer and surveyor were to be paid their costs in respect of the defeated measure. The Bill was successful, and to several parties their costs were paid. Mr. Stephenson’s amounted to £800, and he very nobly said, “You have had an expensive career in Parliament; you have had a great struggle; you are a young Company; you cannot afford to pay me this amount of money. I will reduce it to £200, and I will not ask you for that £200 until your shares are at £20 premium: for whatever may be the reverses you will go through, I am satisfied I shall live to see the day when your shares will be at £20 premium, and when I can legally and honourably claim that £200.” We may add that the shares did eventually rise to the premium specified, and the engineer was no loser by his generous conduct in the transaction.
Another novelty of the time, with which George Stephenson had to contend, was the substitution of atmospheric pressure for locomotive steam-power in the working of railways. The idea of obtaining motion by means of atmospheric pressure is said to have originated with Denis Papin, more than 150 years ago; but it slept until revived in 1810 by Mr. Medhurst, who published a pamphlet to prove the practicability of carrying letters and goods by air. In 1824, Mr. Vallance of Brighton took out a patent for projecting passengers through a tube large enough to contain a train of carriages; the tube being previously exhausted of its atmospheric air. The same idea was afterwards taken up, in 1835, by Mr. Pinkus, an ingenious American. Scientific gentlemen, Dr. Lardner and Mr. Clegg amongst others, advocated the plan; and an association was formed to carry it into effect. Shares were
created, and £18,000 raised: and a model apparatus was exhibited in London. Mr. Vignolles took his friend Stephenson to see the model; and after carefully examining it, he observed emphatically, “It won’t do: it is only the fixed engines and ropes over again, in another form; and, to tell you the truth, I don’t think this rope of wind will answer so well as the rope of wire did.” He did not think the principle would stand the test of practice, and he objected to the mode of applying the principle. After all, it was only a modification of the stationary-engine plan; and every day’s experience was proving that fixed engines could not compete with locomotives in point of efficiency and economy. He stood by the locomotive engine; and subsequent experience proved that he was right.