The next step was the contrivance of arched beams or bow-string girders, firmly held together by horizontal ties to resist the thrust, instead of abutments. Numerous excellent specimens of this description of bridge were erected by Robert Stephenson on the original London and Birmingham Railway; but by far the grandest work of the kind—perfect as a specimen of modern constructive skill—was the High-Level Bridge, which we owe to the genius of the same engineer.
The problem was to throw a railway bridge across the deep ravine which lies between the towns of Newcastle and Gateshead, at the bottom of which flows the navigable river Tyne. Along and up the sides of the valley—on the Newcastle bank especially—run streets of old-fashioned houses, clustered together in the strange forms peculiar to the older cities. The ravine is of great depth—so deep and gloomy-looking toward dusk, that local tradition records that when the Duke of Cumberland arrived late in the evening, at the brow of the hill overlooking the Tyne, on his way to Culloden, he exclaimed to his attendants, on looking down into the black gorge before him, "For God's sake, don't think of taking me down that coal-pit at this time of night!" The road down the Gateshead High Street is almost as steep as the roof of a house, and up the Newcastle Side, as the street there is called, it is little better. During many centuries the traffic north and south passed along this dangerous and difficult route, across the old bridge which spans the river in the bottom of the valley. For some thirty years the Newcastle Corporation had discussed various methods of improving the communication between the towns; and the discussion might have gone on for thirty years more, but for the advent of railways, when the skill and enterprise to which they gave birth speedily solved the difficulty and bridged the ravine. The local authorities adroitly took advantage of the opportunity, and insisted on the provision of a road for ordinary vehicles and foot passengers in addition to the railroad. In this circumstance originated one of the most remarkable peculiarities of the High-Level Bridge, which serves two purposes, being a railway above, with a carriage roadway underneath.
The breadth of the river at the point of crossing is 515 feet, but the length of the bridge and viaduct between the Gateshead station and the terminus on the Newcastle side is about 4000 feet. It springs from Pipewell Gate Bank, on the south, directly across to Castle Garth, where, nearly fronting the bridge, stands the fine old Norman keep of the New Castle, now nearly eight hundred years old; and a little beyond it is the spire of St. Nicholas Church, with its light and graceful Gothic crown, the whole forming a grand architectural group of unusual historic interest. The bridge passes completely over the roofs of the houses which fill both sides of the valley, and the extraordinary height of the upper parapet, which is about 130 feet above the bed of the river, offers a prospect to the passing traveler the like of which is perhaps nowhere else to be seen. Far below lie the queer chares and closes, the wynds and lanes of old Newcastle; the water is crowded with pudgy, black coal keels; and, when there is a lull in the great clouds of smoke which usually obscure the sky, the funnels of steamers and the masts of the shipping may be seen far down the river. The old bridge lies so far beneath that the passengers crossing it seem like so many bees passing to and fro.
The first difficulty encountered in building the bridge was in securing a solid foundation for the piers. The dimensions of the piles to be driven were so huge that the engineer found it necessary to employ some extraordinary means for the purpose. He called Nasmyth's Titanic steam-hammer to his aid—the first occasion, we believe, on which this prodigious power was employed in bridge pile-driving. A temporary staging was erected for the steam-engine and hammer apparatus, which rested on two keels, and, notwithstanding the newness and stiffness of the machinery, the first pile was driven on the 6th of October, 1846, to a depth of 32 feet in four minutes. Two hammers of 30 cwt. each were kept in regular use, making from 60 to 70 strokes per minute, and the results were astounding to those who had been accustomed to the old style of pile-driving by means of the ordinary pile-frame, consisting of slide, ram, and monkey. By the old system the pile was driven by a comparatively small mass of iron descending with great velocity from a considerable height—the velocity being in excess and the mass deficient, and calculated, like the momentum of a cannon-ball, rather for destructive than impulsive action. In the case of the steam pile-driver, on the contrary, the whole weight of a heavy mass is delivered rapidly upon a driving-block of several tons weight placed directly over the head of the pile, the weight never ceasing, and the blows being repeated at the rate of a blow a second, until the pile is driven home. It is a curious fact, that the rapid strokes of the steam-hammer evolved so much heat, that on many occasions the pile-head burst into flame during the process of driving. The elastic force of steam is the power that lifts the ram, the escape permitting its entire force to fall upon the head of the driving-block; while the steam above the piston on the upper part of the cylinder, acting as a buffer or recoil-spring, materially enhances the effect of the downward blow. As soon as one pile was driven, the traveler, hovering overhead, presented another, and down it went into the solid bed of the river with almost as much ease as a lady sticks pins into a cushion. By the aid of this formidable machine, what before was among the most costly and tedious of engineering operations was rendered simple, easy, and economical.
When the piles had been driven and the coffer-dams formed and puddled, the water within the inclosed spaces was pumped out by the aid of powerful engines, so as to lay bare the bed of the river. Considerable difficulty was experienced in getting in the foundations of the middle pier, in consequence of the water forcing itself through the quicksand beneath as fast as it was removed. This fruitless labor went on for months, and many expedients were tried. Chalk was thrown in in large quantities outside the piling, but without effect. Cement concrete was at last put within the coffer-dam until it set, and the bottom was then found to be secure. A bed of concrete was laid up to the level of the heads of the piles, the foundation course of stone blocks being commenced about two feet below low water, and the building proceeded without farther difficulty. It may serve to give an idea of the magnitude of the work when we state that 400,000 cubic feet of ashlar, rubble, and concrete were worked up in the piers, and 450,000 cubic feet in the land-arches and approaches.
HIGH-LEVEL BRIDGE—ELEVATION OF ONE ARCH.
PLAN OF ONE ARCH.
The most novel feature of the structure is the use of cast and wrought iron in forming the double bridge, which admirably combines the two principles of the arch and suspension, the railway being carried over the back of the ribbed arches in the usual manner, while the carriage-road and footpaths, forming a long gallery or aisle, are suspended from these arches by wrought-iron vertical rods, with horizontal tie-bars to resist the thrust. The suspension-bolts are inclosed within spandril pillars of cast iron, which give great stiffness to the superstructure. This system of longitudinal and vertical bracing has been much admired, for it not only accomplishes the primary object of securing rigidity in the roadway, but at the same time, by its graceful arrangement, heightens the beauty of the structure. The arches consist of four main ribs, disposed in pairs, with a clear distance between the two inner arches of 20 feet 4 inches, forming the carriage-road, while between each of the inner and outer ribs there is a space of 6 feet 2 inches, constituting the footpaths. Each arch is cast in five separate lengths or segments, strongly bolted together. The ribs spring from horizontal plates of cast iron, bedded and secured on the stone piers. All the abutting joints were carefully executed by machinery, the fitting being of the most perfect kind. In order to provide for the expansion and contraction of the iron arching, and to preserve the equilibrium of the piers without disturbance or racking of the other parts of the bridge, it was arranged that the ribs of every two adjoining arches resting on the same pier should be secured to the springing-plates by keys and joggles; while on the next piers, on either side, the ribs remained free, and were at liberty to expand or contract according to temperature—a space being left for the purpose. Hence each arch is complete and independent in itself, the piers having simply to sustain their vertical pressure. The arches are six in number, of 125 feet span each, the two approaches to the bridge being formed of cast-iron pillars and bearers in keeping with the arches.
The result is a bridge that for massive solidity may be pronounced unrivaled. It is one of the most magnificent and striking of the bridges to which railways have given birth, and has been worthily styled "the King of railway structures." It is a monument of the highest engineering skill of our time, with the impress of power grandly stamped upon it. It will also be observed from the drawing placed as the frontispiece to this Life, that the High-Level Bridge forms a very fine object in a picture of great interest, full of striking architectural variety and beauty. The bridge was opened on the 15th of August, 1849. A few days after, the royal train passed over it, halting for a few minutes to enable her majesty to survey the wonderful scene below. In the course of the following year the queen opened the extensive stone viaduct across the Tweed above described, by which the last link was completed of the continuous line of railway between London and Edinburg. Over the entrance to the Berwick station, occupying the site of the once redoubtable Border fortress, so often the deadly battle-ground of the ancient Scots and English, was erected an arch under which the royal train passed, bearing in large letters of gold the appropriate words, "The last act of the Union."