As the principal test of the success of the locomotive was its economy as compared with horse-power, careful calculations were made with the view of ascertaining this important point. The result was, that it was found the working of the engine was at first barely economical; and at the end of the year the steam-power and the horse-power were ascertained to be as nearly as possible upon a par in point of cost.
We give the remainder of the history of George Stephenson's efforts to produce an economical working locomotive in the words of his son Robert, as communicated to the author in 1856, for the purposes of his father's "Life."
"A few months of experience and careful observation upon the operation of this (his first) engine convinced my father that the complication arising out of the action of the two cylinders being combined by spur-wheels would prevent their coming into practical application. He then directed his attention to an entire change in the construction and mechanical arrangements, and in the following year took out a patent, dated February 28th, 1815, for an engine which combined in a remarkable degree the essential requisites of an economical locomotive—that is to say, few parts, simplicity in their action, and great simplicity in the mode by which power was communicated to the wheels supporting the engine.
"This second engine consisted as before of two vertical cylinders, which communicated directly with each pair of the four wheels that supported the engine by a cross-head and a pair of connecting-rods; but, in attempting to establish a direct communication between the cylinders and the wheels that rolled upon the rails, considerable difficulties presented themselves. The ordinary joints could not be employed to unite the engine, which was a rigid mass, with the wheels rolling upon the irregular surface of the rails; for it was evident that the two rails of the line of railway could not always be maintained at the same level with respect to each other—that one wheel at the end of the axle might be depressed into a part of the line which had subsided, while the other would be elevated. In such a position of the axle and wheels it was clear that a rigid communication between the cross-head and the wheels was impracticable. Hence it became necessary to form a joint at the top of the piston-rod where it united with the cross-head, so as to permit the cross-head always to preserve complete parallelism with the axle of the wheels with which it was in communication.
"In order to obtain the flexibility combined with direct action which was essential for insuring power and avoiding needless friction and jars from irregularities in the rail, my father employed the 'ball and socket' joint for effecting a union between the ends of the cross-heads where they united with the connecting-rods, and between the end of the connecting-rods where they were united with the crank-pins attached to each driving-wheel. By this arrangement the parallelism between the cross-head and the axle was at all times maintained, it being permitted to take place without producing jar or friction upon any part of the machine.
"The next important point was to combine each pair of wheels by some simple mechanism, instead of the cog-wheels which had formerly been used. My father began by inserting each axle into two cranks at right angles to each other, with rods communicating horizontally between them. An engine was made on this plan, and answered extremely well. But at that period (1815) the mechanical skill of the country was not equal to the task of forging cranked axles of the soundness and strength necessary to stand the jars incident to locomotive work; so my father was compelled to fall back upon a substitute which, though less simple and less efficient, was within the mechanical capabilities of the workmen of that day, either for construction or repair. He adopted a chain which rolled over indented wheels placed on the centre of each axle, and so arranged that the two pairs of wheels were effectually coupled and made to keep pace with each other. But these chains after a few years' use became stretched, and then the engines were liable to irregularity in their working, especially in changing from working back to forward again. Nevertheless, these engines continued in profitable use upon the Killingworth Colliery Railway for some years. Eventually the chain was laid aside, and the front and hind wheels were united by rods on the outside, instead of by rods and crank-ankles inside, as specified in the original patent; and this expedient completely answered the purpose required, without involving any expensive or difficult workmanship.
SECTION OF KILLINGWORTH LOCOMOTIVE, 1815.
"Another important improvement was introduced in this engine. The eduction steam had hitherto been allowed to escape direct into the open atmosphere; but my father, having observed the great velocity with which the waste-steam escaped, compared with the velocity with which the smoke issued from the chimney of the same engine, thought that by conveying the eduction steam into the chimney, and there allowing it to escape in a vertical direction, its velocity would be imparted to the smoke from the engine, or to the ascending current of air in the chimney. The experiment was no sooner made than the power of the engine became more than doubled; combustion was stimulated, as it were, by a blast; consequently, the power of the boiler for generating steam was increased, and, in the same proportion, the useful duty of the engine was augmented.
"Thus, in 1815, my father had succeeded in manufacturing an engine which included the following important improvements on all previous attempts in the same direction: simple and direct communication between the cylinder and the wheels rolling upon the rails; joint adhesion of all the wheels, attained by the use of horizontal connecting-rods; and, finally, a beautiful method of exciting the combustion of fuel by employing the waste steam which had formerly been allowed uselessly to escape. It is, perhaps, not too much to say that this engine, as a mechanical contrivance, contained the germ of all that has since been effected. It may be regarded, in fact, as a type of the present locomotive engine.