A sufficient quantity of each specimen was carefully pulverized, intermixed, and put into a stoppered bottle and thus preserved for experiment.

The analyses were begun in the winter of 1857 by my assistant, Edward H. Twining, Esq. The samples 1 to 17 of the subjoined tables were then analyzed. In the following year the work was continued on the remaining specimens 18—33 by Dr. Robert A. Fisher. The method of analysis was the same in both cases, except in two particulars.

In the earlier analyses, 1 to 17 inclusive, the treatment with carbonate of soda was not carried far enough to dissolve the whole of the soluble organic acids. It was merely attempted to make comparative determinations by treating all alike for the same time, and with the same quantity of alkali. I have little doubt that in some cases not more than one-half of the portion really soluble in carbonate of soda is given as such. In the later analyses, 18 to 33, however, the treatment was continued until complete separation of the soluble organic acids was effected.

By acting on a peat for a long time with a hot solution of carbonate of soda, there is taken up not merely a quantity of organic matter, but inorganic matters likewise enter solution. Silica, oxyd of iron and alumina are thus dissolved. In this process too, sulphate of lime is converted into carbonate of lime.

The total amount of these soluble inorganic matters has been determined with approximate accuracy in analyses 18 to 33.

In the analyses 1 to 17 the collective amount of matters soluble in water was determined. In the later analyses the proportions of organic and inorganic matters in the water-solution were separately estimated.

The process of analysis as elaborated and employed by Dr. Fisher and the author, is as follows:

I. To prepare a sample for analysis, half a pound, more or less, of the substance is pulverized and passed through a wire sieve of 24 meshes to the inch. It is then thoroughly mixed and bottled.

II. 2 grammes of the above are dried (in tared watch-glasses) at the temperature of 212 degrees, until they no longer decrease in weight. The loss sustained represents the amount of water, (according to Marsilly, Annales des Mines, 1857, XII., 404, peat loses carbon if dried at a temperature higher than 212 degrees.)

III. The capsule containing the residue from I. is slowly heated to incipient redness, and maintained at that temperature until the organic matter is entirely consumed. The loss gives the total amount of organic, the residue the total amount of inorganic matter.