Schon hat er am hellen Tage die Ichthosaura geküsst.

We now know that they were not the monsters of horrid mien that they were once supposed to be: the largest plesiosaurs, were they living today, would find unopposable foes in the vicious and cruel crocodiles. They were relatively stupid and slow, cruel enough to the smaller creatures, but of limited prowess. But in structure and habits they are among the most remarkable of all the animals of the past or present.

Although their remains are among the most abundant and widely distributed of all fossil reptiles, the plesiosaurs as a whole are less perfectly known than either the ichthyosaurs or the mosasaurs, and it has been within a comparatively few years only that an approximately complete knowledge of any form has been obtained. This is partly due to the fact that the order comprises vastly more kinds, more species, genera, and families than does any other order of marine reptiles; partly because their remains, though widely distributed over the earth, and in rocks of many geological epochs, are seldom found completely preserved; usually specimens comprise only a few bones or single bones, and complete skeletons are rare. Were there but few kinds, the many specimens discovered would mutually supplement each other, finally completing our knowledge; but the fragments of many kinds only add to our confusion. Nevertheless, because the plesiosaurs lived so long in geological history, their remains are found in rocks of many different kinds, and since it is improbable that any of them had great specific longevity, it is very probable that all these described species, or most of them, often made known from single bones, will eventually be found to be distinct, and that many more will be added to them. It does not seem improbable that within the next forty or fifty years not less than a hundred species of plesiosaurs will have been discovered in North America alone. At the present time perhaps that many have been described from the whole world.

When Blaineville gave the name Plesiosauria to the aquatic reptiles described by Conybeare, Cuvier, and others, he had no knowledge of others of an intermediate kind between them and land reptiles. His group-term then can be properly applied only to the truly aquatic forms, and Owen’s name Sauropterygia becomes available in a wider sense to include all the known types belonging to the order of which the plesiosaurs form a part. Of this order then there are two clearly marked divisions or suborders, the Plesiosauria and the Nothosauria, the former having a complete aquatic adaptation, the latter only a partial one. While the two suborders are evidently allied, some authors have suggested that their differences are only familial; others have thought that they are really orders. We shall see how close the relationships are.

PLESIOSAURIA

It was Dean Buckland who facetiously likened the plesiosaurs to a snake threaded through the shell of a turtle, and the simile was not an inapt one in his day. The vernacular designation of them—long-necked lizards—conveys the same impression of their chief peculiarity, but the name is less applicable than it once was, since recent discoveries have brought to light forms with a relatively short neck.

Though the plesiosaurs are nearly perfectly adapted to an aquatic life, the adaptation was, in many respects, of a very different kind from that of the ichthyosaurs—so very different that we have not yet quite finished conjecturing as to the habits of the living animals. As already suggested in the popular name, the most striking characteristic of the typical plesiosaurs, the one which suggested to Buckland his frequently quoted simile, is the ofttimes enormously long neck, proportionately longer than that of any other known creatures of the past or present. In other truly aquatic animals the neck is actually shortened in the acquirement of a fish-like shape, and the number of bones composing it reduced. In the Sauropterygia the neck is usually longer than any truly land animals ever possessed, the longest-necked forms having as many as seventy-six vertebrae in the cervical region. The elongation of the neck among mammals is always due to an increase in the length of the individual bones, never to an increase in the number from seven, with but a single exception—a South American sloth which has nine cervical vertebrae. The long neck of birds is due both to an increase in the length of the individual vertebrae and to an increase in their number, to as many as twenty-one. But the elongation of the neck among plesiosaurs was very variable indeed; sometimes it was ten or twelve times the length of the head, at other times it was even shorter than the head. And the number of bones composing it was also extremely variable, scarcely any two species having the same, the known extremes being seventy-six and thirteen. In Elasmosaurus platyurus, for instance, the longest-necked plesiosaur known, the head was two feet in length, the neck twenty-three, the body nine, and the tail about seven; on the other hand, in the shortest-necked plesiosaur known, Brachauchenius Lucasi, the head was two and one-half feet in length, the neck less than two feet, and the body about five; the length of the tail is unknown.

Fig. 32.—Skeleton of Trinacromerum osborni, a Cretaceous plesiosaur,
as mounted in the University of Kansas Museum.

Not only was the number of vertebrae so extraordinarily increased in many plesiosaurs, but in the longest necks the vertebrae themselves, as in birds, were more or less elongated, especially the posterior ones, which may be six or seven times the length of the anterior ones. Not only was the neck of such great length in many plesiosaurs, but it also tapered very much toward the head.